메뉴 건너뛰기




Volumn 16, Issue , 2006, Pages 199-220

Multi-objective optimization of support vector machines

Author keywords

[No Author keywords available]

Indexed keywords


EID: 33845346175     PISSN: 1860949X     EISSN: None     Source Type: Book Series    
DOI: 10.1007/11399346_9     Document Type: Article
Times cited : (55)

References (48)
  • 1
    • 0036275180 scopus 로고    scopus 로고
    • An evolutionary artificial neural networks approach for breast cancer diagnosis
    • 206
    • Hussein A. Abbass. An evolutionary artificial neural networks approach for breast cancer diagnosis. Artificial Intelligence in Medicine, 25(3):265-281, 2002. 206
    • (2002) Artificial Intelligence in Medicine , vol.25 , Issue.3 , pp. 265-281
    • Abbass, H.A.1
  • 2
    • 0141542628 scopus 로고    scopus 로고
    • Speeding up backpropagation using multiobjective evolutionary algorithms
    • 206
    • Hussein A. Abbass. Speeding up backpropagation using multiobjective evolutionary algorithms. Neural Computation, 15(11):2705-2726, 2003. 206
    • (2003) Neural Computation , vol.15 , Issue.11 , pp. 2705-2726
    • Abbass, H.A.1
  • 7
    • 0003408496 scopus 로고    scopus 로고
    • UCI repository of machine learning databases
    • 210
    • C.L. Blake and C.J. Merz. UCI repository of machine learning databases, 1998. 210
    • (1998)
    • Blake, C.L.1    Merz, C.J.2
  • 9
    • 0036161011 scopus 로고    scopus 로고
    • Choosing multiple parameters for support vector machines
    • 205, 209
    • O. Chapelle, V. Vapnik, O. Bousquet, and S. Mukherjee. Choosing multiple parameters for support vector machines. Machine Learning, 46(1):131-159, 2002. 205, 209
    • (2002) Machine Learning , vol.46 , Issue.1 , pp. 131-159
    • Chapelle, O.1    Vapnik, V.2    Bousquet, O.3    Mukherjee, S.4
  • 10
    • 0141430928 scopus 로고    scopus 로고
    • Radius margin bounds for support vector machines with RBF kernel
    • 205, 208, 210
    • K.-M. Chung, W.-C. Kao, C.-L. Sun, and C.-J. Lin. Radius margin bounds for support vector machines with RBF kernel. Neural Computation, 15(11):2643-2681, 2003. 205, 208, 210
    • (2003) Neural Computation , vol.15 , Issue.11 , pp. 2643-2681
    • Chung, K.-M.1    Kao, W.-C.2    Sun, C.-L.3    Lin, C.-J.4
  • 16
    • 0037382208 scopus 로고    scopus 로고
    • Evaluation of simple performance measures for tuning SVM hyperparameters
    • 208
    • K. Duan, S. S. Keerthi, and A.N. Poo. Evaluation of simple performance measures for tuning SVM hyperparameters. Neurocomputing, 51:41-59, 2003. 208
    • (2003) Neurocomputing , vol.51 , pp. 41-59
    • Duan, K.1    Keerthi, S.S.2    Poo, A.N.3
  • 17
    • 0036993130 scopus 로고    scopus 로고
    • Genetic algorithms and support vector machines for time series classification
    • In Bruno Bosacchi, David B. Fogel, and James C. Bezdek, editors, volume of Proceedings of the SPIE, 205, 207
    • Damian R. Eads, Daniel Hill, Sean Davis, Simon J. Perkins, Junshui Ma, Reid B. Porter, and James P. Theiler. Genetic algorithms and support vector machines for time series classification. In Bruno Bosacchi, David B. Fogel, and James C. Bezdek, editors, Applications and Science of Neural Networks, Fuzzy Systems, and Evolutionary Computation V., volume 4787 of Proceedings of the SPIE, pages 74-85, 2002. 205, 207
    • (2002) Applications and Science of Neural Networks, Fuzzy Systems, and Evolutionary Computation V , vol.4787 , pp. 74-85
    • Eads, D.R.1    Hill, D.2    Davis, S.3    Perkins, S.J.4    Ma, J.5    Porter, R.B.6    Theiler, J.P.7
  • 19
    • 15844394276 scopus 로고    scopus 로고
    • Evolutionary tuning of multiple SVM parameters
    • 205, 209
    • Frauke Friedrichs and Christian Igel. Evolutionary tuning of multiple SVM parameters. Neurocomputing, 64(C):107-117, 2005. 205, 209
    • (2005) Neurocomputing , vol.64 , Issue.C , pp. 107-117
    • Friedrichs, F.1    Igel, C.2
  • 21
    • 23944487822 scopus 로고    scopus 로고
    • Gradient-based adaptation of general gaussian kernels
    • 205, 209, 210
    • Tobias Glasmachers and Christian Igel. Gradient-based adaptation of general gaussian kernels. Neural Computation, 17(10):2099-2105, 2005. 205, 209, 210
    • (2005) Neural Computation , vol.17 , Issue.10 , pp. 2099-2105
    • Glasmachers, T.1    Igel, C.2
  • 22
    • 0242288807 scopus 로고    scopus 로고
    • Model selection for support vector machine classification
    • 205
    • Carl Gold and Peter Sollich. Model selection for support vector machine classification. Neurocomputing, 55(1-2):221-249, 2003. 205
    • (2003) Neurocomputing , vol.55 , Issue.1-2 , pp. 221-249
    • Gold, C.1    Sollich, P.2
  • 25
    • 24344435631 scopus 로고    scopus 로고
    • Multi-objective model selection for support vector machines
    • In C. A. Coello Coello, E. Zitzler, and A. Hernandez Aguirre, editors, of LNCS, Springer-Verlag, 200, 206, 208, 209, 210, 211 212
    • C. Igel. Multi-objective model selection for support vector machines. In C. A. Coello Coello, E. Zitzler, and A. Hernandez Aguirre, editors, Proceedings of the Third International Conference on Evolutionary Multi-Criterion Optimization (EMO 2005), volume 3410 of LNCS, pages 534-546. Springer-Verlag, 2005. 200, 206, 208, 209, 210, 211, 212
    • (2005) Proceedings of the Third International Conference on Evolutionary Multi-Criterion Optimization (EMO 2005) , vol.3410 , pp. 534-546
    • Igel, C.1
  • 26
    • 4344623228 scopus 로고    scopus 로고
    • Neural network regularization and ensembling using multi-objective evolutionary algorithms
    • In IEEE Press, 206
    • Yaochu Jin, Tatsuya Okabe, and Bernhard Sendhoff. Neural network regularization and ensembling using multi-objective evolutionary algorithms. In Congress on Evolutionary Computation (CEC'04), pages 1-8. IEEE Press, 2004. 206
    • (2004) Congress on Evolutionary Computation (CEC'04) , pp. 1-8
    • Jin, Y.1    Okabe, T.2    Sendhoff, B.3
  • 27
    • 35048820555 scopus 로고    scopus 로고
    • Analysis of proteomic pattern data for cancer detection
    • In G. R. Raidl, S. Cagnoni, J. Branke, D. W. Corne, R. Drechsler, Y. Jin, C. G. Johnson, P. Machado, E. Marchiori, F. Rothlauf, G. D. Smith, and G. Squillero, editors, of LNCS, Springer-Verlag, 205 207
    • Kees Jong, Elena Marchiori, and Aad van der Vaart. Analysis of proteomic pattern data for cancer detection. In G. R. Raidl, S. Cagnoni, J. Branke, D. W. Corne, R. Drechsler, Y. Jin, C. G. Johnson, P. Machado, E. Marchiori, F. Rothlauf, G. D. Smith, and G. Squillero, editors, Applications of Evolutionary Computing, volume 3005 of LNCS, pages 41-51. Springer-Verlag, 2004. 205, 207
    • (2004) Applications of Evolutionary Computing , vol.3005 , pp. 41-51
    • Jong, K.1    Marchiori, E.2    van der Vaart, A.3
  • 28
    • 0036738840 scopus 로고    scopus 로고
    • Efficient tuning of SVM hyperparameters using radius/margin bound and iterative algorithms
    • 205
    • S. S. Keerthi. Efficient tuning of SVM hyperparameters using radius/ margin bound and iterative algorithms. IEEE Transactions on Neural Networks, 13(5):1225-1229, 2002. 205
    • (2002) IEEE Transactions on Neural Networks , vol.13 , Issue.5 , pp. 1225-1229
    • Keerthi, S.S.1
  • 29
    • 0041780746 scopus 로고    scopus 로고
    • Feature selection for computer-aided polyp detection using genetic algorithms
    • In Anne V. Clough and Amir A. Amini, editors, of Proceedings of the SPIE, 205, 207
    • M. T. Miller, A. K. Jerebko, J. D. Malley, and R. M. Summers. Feature selection for computer-aided polyp detection using genetic algorithms. In Anne V. Clough and Amir A. Amini, editors, Medical Imaging 2003: Physiology and Function: Methods, Systems, and Applications, volume 5031 of Proceedings of the SPIE, pages 102-110, 2003. 205, 207
    • (2003) Medical Imaging 2003: Physiology and Function: Methods, Systems, and Applications , vol.5031 , pp. 102-110
    • Miller, M.T.1    Jerebko, A.K.2    Malley, J.D.3    Summers, R.M.4
  • 30
    • 0035305653 scopus 로고    scopus 로고
    • Constantine Papageorgiou, and Thomas Poggio. Example-based object detection in images by components
    • 200, 212
    • Anuj Mohan, Constantine Papageorgiou, and Thomas Poggio. Example-based object detection in images by components. IEEE Transactions on Pattern Analysis and Machine Intelligence, 23(4):349-361, 2001. 200, 212
    • (2001) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.23 , Issue.4 , pp. 349-361
    • Mohan, A.1
  • 31
    • 0003260442 scopus 로고    scopus 로고
    • Combining statistical learning with a knowledge-based approach - A case study in intensive care monitoring
    • In Morgan Kaufmann, 204
    • Katharina Morik, Peter Brockhausen, and Thorsten Joachims. Combining statistical learning with a knowledge-based approach - a case study in intensive care monitoring. In Proceedings of the 16th International Conference on Machine Learning, pages 268-277. Morgan Kaufmann, 1999. 204
    • (1999) Proceedings of the 16th International Conference on Machine Learning , pp. 268-277
    • Morik, K.1    Brockhausen, P.2    Joachims, T.3
  • 33
    • 10944232611 scopus 로고    scopus 로고
    • Inductive vs. transductive inference, global vs. local models: SVM, TSVM, and SVMT for gene expression classification problems
    • In IEEE Press, 206, 207, 209
    • S. Pang and N. Kasabov. Inductive vs. transductive inference, global vs. local models: SVM, TSVM, and SVMT for gene expression classification problems. In International Joint Conference on Neual Networks (IJCNN), volume 2, pages 1197-1202. IEEE Press, 2004. 206, 207, 209
    • (2004) International Joint Conference on Neual Networks (IJCNN) , vol.2 , pp. 1197-1202
    • Pang, S.1    Kasabov, N.2
  • 35
    • 21944455341 scopus 로고    scopus 로고
    • A trainable system for object detection in images and video sequences
    • Technical Report AITR-1685, Massachusetts Institute of Technology, Artificial Intelligene Laboratory, 212
    • C. P. Papageorgiou. A trainable system for object detection in images and video sequences. Technical Report AITR-1685, Massachusetts Institute of Technology, Artificial Intelligene Laboratory, 2000. 212
    • (2000)
    • Papageorgiou, C.P.1
  • 38
    • 0001739150 scopus 로고
    • On correlated mutations in evolution strategies
    • In R. Männer and B. Manderick, editors, Elsevier, 210
    • Günther Rudolph. On correlated mutations in evolution strategies. In R. Männer and B. Manderick, editors, Parallel Problem Solving from Nature 2 (PPSN II), pages 105-114. Elsevier, 1992. 210
    • (1992) Parallel Problem Solving from Nature 2 (PPSN II) , pp. 105-114
    • Rudolph, G.1
  • 39
    • 24344442704 scopus 로고    scopus 로고
    • Asynchronous parallel evolutionary model selection for support vector machines
    • 205
    • Thomas Philip Runarsson and Sven Sigurdsson. Asynchronous parallel evolutionary model selection for support vector machines. Neural Information Processing - Letters and Reviews, 3(3):59-68, 2004. 205
    • (2004) Neural Information Processing - Letters and Reviews , vol.3 , Issue.3 , pp. 59-68
    • Runarsson, T.P.1    Sigurdsson, S.2
  • 46
    • 24344471654 scopus 로고    scopus 로고
    • Evolutionary multi-objective optimization of neural networks for face detection
    • Special issue on Neurocomputing and Hybrid Methods for Evolving Intelligence. 206, 215
    • S. Wiegand, C. Igel, and U. Handmann. Evolutionary multi-objective optimization of neural networks for face detection. International Journal of Computational Intelligence and Applications, 4(3):237-253, 2004. Special issue on Neurocomputing and Hybrid Methods for Evolving Intelligence. 206, 215
    • (2004) International Journal of Computational Intelligence and Applications , vol.4 , Issue.3 , pp. 237-253
    • Wiegand, S.1    Igel, C.2    Handmann, U.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.