메뉴 건너뛰기




Volumn , Issue , 2011, Pages 67-80

Utilization of support vector machine (SVM) for prediction of ultimate capacity of driven piles in cohesionless soils

Author keywords

Artificial neural network; Pile foundation; Prediction.; Sensitivity analysis; Support vector machine

Indexed keywords


EID: 84892000220     PISSN: None     EISSN: None     Source Type: Book    
DOI: None     Document Type: Chapter
Times cited : (1)

References (33)
  • 1
    • 0032430468 scopus 로고    scopus 로고
    • General Regression Neural Networks for driven piles in cohesionless soils
    • Kiefa, M.A. General Regression Neural Networks for driven piles in cohesionless soils. Journal of geotechnical and geoenviromental engineering., 1998 124 (12), 1177-1185.
    • (1998) Journal of geotechnical and geoenviromental engineering. , vol.124 , Issue.12 , pp. 1177-1185
    • Kiefa, M.A.1
  • 2
    • 0026966646 scopus 로고
    • A training algorithm for optimal margin classifiers
    • In D. Haussler, editor, Pittsburgh, PA, ACM Press
    • Boser, B.E.; Guyon, I.M.; Vapnik, V.N. A training algorithm for optimal margin classifiers. In D. Haussler, editor, 5th Annual ACM Workshop on COLT, Pittsburgh, PA, ACM Press, 1992, 144-152.
    • (1992) 5th Annual ACM Workshop on COLT , pp. 144-152
    • Boser, B.E.1    Guyon, I.M.2    Vapnik, V.N.3
  • 3
    • 0028977232 scopus 로고
    • Neural Network: An Alternative to pile driving formula
    • Chan, W.T.; Chow, Y.K.; Liu, L.F. Neural Network: An Alternative to pile driving formula. Computers and geotechnics., 1995 17, 135-156.
    • (1995) Computers and geotechnics. , vol.17 , pp. 135-156
    • Chan, W.T.1    Chow, Y.K.2    Liu, L.F.3
  • 7
    • 0003798635 scopus 로고    scopus 로고
    • An introduction to Support vector machine
    • Cambridge University press, London
    • Cristianini, N.; Shawe-Taylor, J. (2000). An introduction to Support vector machine, Cambridge University press, London.
    • (2000)
    • Cristianini, N.1    Shawe-Taylor, J.2
  • 8
    • 0005692960 scopus 로고
    • Potential application of neuro-biological computational models in geotechnical engineering
    • G.N. Pande and S. Pietruszezak, eds., Balkemma, Rotterdam, The Netherlands
    • Ghaboussi, J. Potential application of neuro-biological computational models in geotechnical engineering. Numerical models in geomechanices 1992, G.N. Pande and S. Pietruszezak, eds., Balkemma, Rotterdam, The Netherlands, 543-555.
    • (1992) Numerical models in geomechanices , pp. 543-555
    • Ghaboussi, J.1
  • 9
    • 0029415865 scopus 로고
    • Empirical design in geotechnics using neural networks
    • Goh, A.T.C. Empirical design in geotechnics using neural networks. Geotechnique., 1995 45 (4), 709-714.
    • (1995) Geotechnique. , vol.45 , Issue.4 , pp. 709-714
    • Goh, A.T.C.1
  • 10
    • 0344378124 scopus 로고    scopus 로고
    • Support vector machine classifiers as applied to AVIRIS data
    • In the Summaries of the Eighth JPL Airbrone Earth Science Workshop
    • Gualtieri, J.A.; Chettri, S.R.; Cromp, R.F.; Johnson, L.F. (1999). Support vector machine classifiers as applied to AVIRIS data. In the Summaries of the Eighth JPL Airbrone Earth Science Workshop.
    • (1999)
    • Gualtieri, J.A.1    Chettri, S.R.2    Cromp, R.F.3    Johnson, L.F.4
  • 11
    • 0003425664 scopus 로고    scopus 로고
    • Support vector machines for classification and regression, Image
    • Rep., University of Southampton, U.K
    • Gunn, S. (1998). Support vector machines for classification and regression, Image. Speech and Intelligent Systems Tech. Rep., University of Southampton, U.K.
    • (1998) Speech and Intelligent Systems Tech.
    • Gunn, S.1
  • 12
    • 0004291150 scopus 로고    scopus 로고
    • Learning and Soft Computing: Support Vector Machines, Neural Networks, And Fuzzy Logic Models
    • the MIT press: Cambridge, Massachusetts, London, England
    • Kecman, V. Learning and Soft Computing: Support Vector Machines, Neural Networks, And Fuzzy Logic Models, the MIT press: Cambridge, Massachusetts, London, England, 2001.
    • (2001)
    • Kecman, V.1
  • 13
    • 0030472893 scopus 로고    scopus 로고
    • Prediction of pile bearing capacity using artificial neural network
    • Lee, I.M.; Lee, J.H. Prediction of pile bearing capacity using artificial neural network. Computers and geotechnics., 1996 18 (3), 189-200.
    • (1996) Computers and geotechnics. , vol.18 , Issue.3 , pp. 189-200
    • Lee, I.M.1    Lee, J.H.2
  • 16
    • 0016928323 scopus 로고
    • Bearing capacity and settlement of pile foundation
    • Meyerhof, G.G. Bearing capacity and settlement of pile foundation. Journal of Geotechnical Engineering., 1976 102 (3), 196-228.
    • (1976) Journal of Geotechnical Engineering. , vol.102 , Issue.3 , pp. 196-228
    • Meyerhof, G.G.1
  • 20
    • 45749119086 scopus 로고    scopus 로고
    • Modeling pile capacity using support vector machines and generalized regression neural network
    • Pal, M.; Deswal, S. Modeling pile capacity using support vector machines and generalized regression neural network. Journal of Geotechnical and Geoenvironmental Engineering., 2008 134 (7), 1021-1024.
    • (2008) Journal of Geotechnical and Geoenvironmental Engineering. , vol.134 , Issue.7 , pp. 1021-1024
    • Pal, M.1    Deswal, S.2
  • 21
    • 0032623401 scopus 로고    scopus 로고
    • Forecasting freeway link ravel times with a multi-layer feed forward neural network
    • Park, D; Rilett, L.R. Forecasting freeway link ravel times with a multi-layer feed forward neural network. Computer Aided Civil and Znfa Structure Engineering., 1999 14, 358-367.
    • (1999) Computer Aided Civil and Znfa Structure Engineering. , vol.14 , pp. 358-367
    • Park, D.1    Rilett, L.R.2
  • 23
    • 67651006180 scopus 로고    scopus 로고
    • Prediction of pile settlement using artificial neural networks based on standard penetration test data
    • Pooya Nejad, F.; Jaksa, M.B.; Kakhi, M.; McCabe, B.A. Prediction of pile settlement using artificial neural networks based on standard penetration test data. Computers and Geotechnics., 2009 36 (7), 1125-1133.
    • (2009) Computers and Geotechnics. , vol.36 , Issue.7 , pp. 1125-1133
    • Pooya Nejad, F.1    Jaksa, M.B.2    Kakhi, M.3    McCabe, B.A.4
  • 24
    • 0028667480 scopus 로고
    • Design of driven piles in sand
    • Randolph, M.F.; Dolwin, J; Beck, R. Design of driven piles in sand. Ge'otechnique., 1994 44 (3), 427-448.
    • (1994) Ge'otechnique. , vol.44 , Issue.3 , pp. 427-448
    • Randolph, M.F.1    Dolwin, J.2    Beck, R.3
  • 25
    • 2442647136 scopus 로고
    • Capacity of piles driven into dense sand
    • Rep. Soils TR 171, Engg. Dept., Cambridge University
    • Randolph, M.F. Capacity of piles driven into dense sand. Rep. Soils TR 171, Engg. Dept., Cambridge University, 1985.
    • (1985)
    • Randolph, M.F.1
  • 26
    • 84866492671 scopus 로고
    • Recommended practice for planning, designing and constructing fixed offshore platforms
    • RP2A, American petroleum Institute, Washington, D.C., 15th Ed
    • RP2A: Recommended practice for planning, designing and constructing fixed offshore platforms. American petroleum Institute, Washington, D.C., 1984, 15th Ed.
    • (1984)
  • 27
    • 33645768800 scopus 로고    scopus 로고
    • Artificial Neural Network Prediction of Stability Numbers for Two-layered Slopes with Associated Flow Rule
    • Samui, P; Kumar, B. Artificial Neural Network Prediction of Stability Numbers for Two-layered Slopes with Associated Flow Rule. The Electronic Journal of Geotechnical Engineering. 2006, 11.
    • (2006) The Electronic Journal of Geotechnical Engineering. , pp. 11
    • Samui, P.1    Kumar, B.2
  • 28
    • 41549100153 scopus 로고    scopus 로고
    • Prediction of friction capacity of driven piles in clay using the support vector machine
    • Samui, P. Prediction of friction capacity of driven piles in clay using the support vector machine. Canadian Geotechnical Journal., 2008 45 (2), 288-295.
    • (2008) Canadian Geotechnical Journal. , vol.45 , Issue.2 , pp. 288-295
    • Samui, P.1
  • 29
    • 0003893955 scopus 로고    scopus 로고
    • Support vector learning
    • R. Oldenbourg, Munich
    • Scholkopf, B. (1997). Support vector learning, R. Oldenbourg, Munich.
    • (1997)
    • Scholkopf, B.1
  • 31
    • 0003450542 scopus 로고
    • The nature of statistical learning theory
    • Springer, New York
    • Vapnik, V.N. (1995). The nature of statistical learning theory. Springer, New York.
    • (1995)
    • Vapnik, V.N.1
  • 32
    • 0003991806 scopus 로고    scopus 로고
    • Statistical learning theory
    • New York, Wiley
    • Vapnik, V.N. (1998). Statistical learning theory. New York, Wiley.
    • (1998)
    • Vapnik, V.N.1
  • 33
    • 84887252594 scopus 로고    scopus 로고
    • Support method for function approximation regression estimation and signal processing
    • Mozer M. and Petsch T., Eds. Cambridge, Ma:MIT press
    • Vapnik, V.N.; Golowich, S.; Smola, A. (1997). Support method for function approximation regression estimation and signal processing. Advance in neural information processing system 9, Mozer M. and Petsch T., Eds. Cambridge, Ma:MIT press.
    • (1997) Advance in neural information processing system 9
    • Vapnik, V.N.1    Golowich, S.2    Smola, A.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.