메뉴 건너뛰기




Volumn , Issue , 2006, Pages 671-676

Hybrid neural network and genetic algorithm approach to the prediction of bearing capacity of driven piles

Author keywords

[No Author keywords available]

Indexed keywords

BACKPROPAGATION; BEARINGS (STRUCTURAL); FORECASTING; GENETIC ALGORITHMS; GEOTECHNICAL ENGINEERING; IMAGE CLASSIFICATION; NEURAL NETWORKS; NUMBER THEORY; NUMERICAL METHODS; PILES; WELDS;

EID: 56149104527     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (4)

References (18)
  • 1
    • 56149124099 scopus 로고    scopus 로고
    • Optimum Driving Method for Steel Pipe Piles in Sands
    • Baik, K. 2002. Optimum Driving Method for Steel Pipe Piles in Sands. J. of Civil Engineering, 22(1-C): 45-55.
    • (2002) J. of Civil Engineering , vol.22 , Issue.1 -C , pp. 45-55
    • Baik, K.1
  • 3
    • 84961246662 scopus 로고
    • Proc. 23rd Annual Offshore Technology Conf
    • Brucy, F., Meunier, J. & Nauroy, J. F. 1991. Behavior of Pile Plug in Sandy Soils during and after Driving. Proc. 23rd Annual Offshore Technology Conf., 1: 145-154.
    • (1991) , vol.1 , pp. 145-154
    • Brucy, F.1    Meunier, J.2    Nauroy, J.F.3
  • 5
    • 56149091980 scopus 로고    scopus 로고
    • The Characteristics of the Set-up Efect of Driven Piles
    • Cho, C. W. 2003. The Characteristics of the Set-up Efect of Driven Piles. J. of Korean Geotechnical Society, JKGS, 19(4): 235-246.
    • (2003) J. of Korean Geotechnical Society, JKGS , vol.19 , Issue.4 , pp. 235-246
    • Cho, C.W.1
  • 6
    • 0028599929 scopus 로고
    • Grouping Parts with a Neural Network
    • Chung, Y. & Kusiak, A. 1994. Grouping Parts with a Neural Network. J. of Manufacturing System, 13(4): 262-275.
    • (1994) J. of Manufacturing System , vol.13 , Issue.4 , pp. 262-275
    • Chung, Y.1    Kusiak, A.2
  • 8
    • 0031237746 scopus 로고    scopus 로고
    • The Plugging Behavior of Driven and Jacked Piles in Sand
    • De Nicolar, A. & Randolph, M. F. 1997. The Plugging Behavior of Driven and Jacked Piles in Sand. Geotechnique, 47(4): 841-859.
    • (1997) Geotechnique , vol.47 , Issue.4 , pp. 841-859
    • De Nicolar, A.1    Randolph, M.F.2
  • 9
    • 0028666973 scopus 로고
    • Seismic Liquefaction Potential assessed by Neural Networks
    • Goh, A. T. C. 1994. Seismic Liquefaction Potential assessed by Neural Networks. J. Geotech. Engrg. Div., ASCE, 120(9): 1467-1480.
    • (1994) J. Geotech. Engrg. Div., ASCE , vol.120 , Issue.9 , pp. 1467-1480
    • Goh, A.T.C.1
  • 12
    • 0026108880 scopus 로고
    • Performance of Axially Loaded Pipe Piles in Sand
    • Kraft, L. M., Jr. 1991. Performance of Axially Loaded Pipe Piles in Sand. J. Geotech. Engrg., 117(2): 272-296.
    • (1991) J. Geotech. Engrg , vol.117 , Issue.2 , pp. 272-296
    • Kraft Jr., L.M.1
  • 13
    • 0030196549 scopus 로고    scopus 로고
    • Neural Computing based Design of Components for Cellular Manufacturing
    • Kusiak, A. & Lee, H. 1996. Neural Computing based Design of Components for Cellular Manufacturing. International Journal of Production Research, 34(7): 1777-1790.
    • (1996) International Journal of Production Research , vol.34 , Issue.7 , pp. 1777-1790
    • Kusiak, A.1    Lee, H.2
  • 14
    • 0030472893 scopus 로고    scopus 로고
    • Prediction of Pile Bearing Capacity Using Artificial Neural Networks
    • Lee, I. M. & Lee, J. H. 1996. Prediction of Pile Bearing Capacity Using Artificial Neural Networks. Computers and Geotechnics, 18(3): 189-200.
    • (1996) Computers and Geotechnics , vol.18 , Issue.3 , pp. 189-200
    • Lee, I.M.1    Lee, J.H.2
  • 16
    • 0035035711 scopus 로고    scopus 로고
    • A Neural Network Model for the Uplift Capacity of Suction Caissions
    • Rahman, M. S., Wang, J., Deng, W. & Carter, J. P. 2001. A Neural Network Model for the Uplift Capacity of Suction Caissions. Computers and Geotechnics, 28: 269-287.
    • (2001) Computers and Geotechnics , vol.28 , pp. 269-287
    • Rahman, M.S.1    Wang, J.2    Deng, W.3    Carter, J.P.4
  • 18
    • 0035309164 scopus 로고    scopus 로고
    • Neural Network and genetic algorithm based hybrid approach to expanded job-shop scheduling
    • Yu, H. & Liang, W. 2001. Neural Network and genetic algorithm based hybrid approach to expanded job-shop scheduling, Computers and Industrial Engineering, 39: 337-356.
    • (2001) Computers and Industrial Engineering , vol.39 , pp. 337-356
    • Yu, H.1    Liang, W.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.