메뉴 건너뛰기




Volumn 8, Issue 12, 2013, Pages

Bayesian networks for clinical decision support in lung cancer care

Author keywords

[No Author keywords available]

Indexed keywords

AREA UNDER THE CURVE; ARTICLE; BAYES THEOREM; CANCER STAGING; CAUSAL ATTRIBUTION; CHEMORADIOTHERAPY; CLINICAL DECISION MAKING; COMPARATIVE STUDY; DATA PROCESSING; HUMAN; LEARNING ALGORITHM; LOGISTIC REGRESSION ANALYSIS; LUNG CANCER; MEDICAL EXPERT; PATIENT CARE; PROBABILITY; RECEIVER OPERATING CHARACTERISTIC; SURVIVAL PREDICTION; SURVIVAL RATE; TREATMENT PLANNING;

EID: 84891915402     PISSN: None     EISSN: 19326203     Source Type: Journal    
DOI: 10.1371/journal.pone.0082349     Document Type: Article
Times cited : (122)

References (76)
  • 1
    • 0034922742 scopus 로고    scopus 로고
    • Machine learning for medical diagnosis: History, state of the art and perspective
    • DOI 10.1016/S0933-3657(01)00077-X, PII S093336570100077X
    • Kononenko I (2001) Machine learning for medical diagnosis: history, state of the art and perspective. Artif Intell Med 23:89-109. Available: http://www.ncbi.nlm.nih.gov/pubmed/11470218. doi:10.1016/S0933-3657 (01) 00077-X. PubMed: 11470218. (Pubitemid 32677979)
    • (2001) Artificial Intelligence in Medicine , vol.23 , Issue.1 , pp. 89-109
    • Kononenko, I.1
  • 2
    • 0032895111 scopus 로고    scopus 로고
    • Selected techniques for data mining in medicine
    • DOI 10.1016/S0933-3657(98)00062-1, PII S0933365798000621
    • Lavrac N (1999) Selected techniques for data mining in medicine. Artif Intell Med 16:3-23. Available: http://www.ncbi.nlm.nih.gov/pubmed/10225344. doi:10.1016/S0933-3657 (98) 00062-1. PubMed: 10225344. (Pubitemid 29166882)
    • (1999) Artificial Intelligence in Medicine , vol.16 , Issue.1 , pp. 3-23
    • Lavrac, N.1
  • 3
    • 33750321032 scopus 로고    scopus 로고
    • Multidisciplinary teams in cancer care: Are they effective in the UK?
    • DOI 10.1016/S1470-2045(06)70940-8, PII S1470204506709408
    • Fleissig A, Jenkins V, Catt S, Fallowfield L (2006) Multidisciplinary teams in cancer care: are they effective in the UK? Lancet Oncol 7:935-943. Available: http://www.ncbi.nlm.nih.gov/pubmed/17081919. doi:10.1016/S1470-2045 (06) 70940-8. PubMed: 17081919. (Pubitemid 44615953)
    • (2006) Lancet Oncology , vol.7 , Issue.11 , pp. 935-943
    • Fleissig, A.1    Jenkins, V.2    Catt, S.3    Fallowfield, L.4
  • 4
    • 1842765480 scopus 로고    scopus 로고
    • Bayesian networks in biomedicine and health-care
    • DOI 10.1016/j.artmed.2003.11.001, PII S0933365703001313
    • Lucas PJ, van der Gaag LC, Abu-Hanna A (2004) Bayesian networks in biomedicine and health-care. Artif Intell Med 30:201-214. Available: http://www.ncbi.nlm.nih.gov/pubmed/15081072. Accessed 26 August 2011 doi:10.1016/j.artmed.2003.11.001. PubMed: 15081072. (Pubitemid 38471893)
    • (2004) Artificial Intelligence in Medicine , vol.30 , Issue.3 , pp. 201-214
    • Lucas, P.J.F.1    Van Der Gaag, L.C.2    Abu-Hanna, A.3
  • 5
    • 77950565847 scopus 로고    scopus 로고
    • Comparison of Bayesian network and support vector machine models for two-year survival prediction in lung cancer patients treated with radiotherapy
    • Accessed 13 July 2012, doi:10.1118/1.3352709. PubMed: 20443461
    • Jayasurya K, Fung G, Yu S, Dehing-Oberije C, De Ruysscher D et al. (2010) Comparison of Bayesian network and support vector machine models for two-year survival prediction in lung cancer patients treated with radiotherapy. Med Phys 37:1401-1407. Available: http://link.aip.org/link/MPHYA6/v37/i4/p1401/ s1&Agg=doi. Accessed 13 July 2012 doi:10.1118/1.3352709. PubMed: 20443461.
    • (2010) Med Phys , vol.37 , pp. 1401-1407
    • Jayasurya, K.1    Fung, G.2    Yu, S.3    Dehing-Oberije, C.4    De Ruysscher, D.5
  • 7
    • 79955936711 scopus 로고    scopus 로고
    • Estimating survival in patients with operable skeletal metastases: An application of a Bayesian belief network
    • Accessed 25 May 2013, doi:10.1371/journal.pone.0019956. PubMed: 21603644
    • Forsberg JA, Eberhardt J, Boland PJ, Wedin R, Healey JH (2011) Estimating survival in patients with operable skeletal metastases: an application of a Bayesian belief network. PLOS ONE 6:e19956. Available: http://www.pubmedcentral. nih.gov/articlerender.fcgi?artid=3094405&tool=pmcentrez&rendertype= abstract. Accessed 25 May 2013 doi:10.1371/journal.pone.0019956. PubMed: 21603644.
    • (2011) PLOS ONE , vol.6
    • Forsberg, J.A.1    Eberhardt, J.2    Boland, P.J.3    Wedin, R.4    Healey, J.H.5
  • 8
    • 34548136498 scopus 로고    scopus 로고
    • Causality: Models, reasoning and inference
    • Pearl J (2000) Causality: Models, Reasoning and Inference. Cambridge Unviersity Press.
    • (2000) Cambridge Unviersity Press
    • Pearl, J.1
  • 10
    • 0001006209 scopus 로고
    • Local Computations with Probabilities on Graphical Structures and their Application to Expert Systems
    • Lauritzen S, Spiegelhalter D (1988) Local Computations with Probabilities on Graphical Structures and their Application to Expert Systems. J R Stat Soc 50:157-224.
    • (1988) J R Stat Soc , vol.50 , pp. 157-224
    • Lauritzen, S.1    Spiegelhalter, D.2
  • 12
    • 0011420552 scopus 로고    scopus 로고
    • A tutorial on learning with bayesian networks
    • Heckerman D (1996) A Tutorial on Learning with Bayesian Networks. Redmond.
    • (1996) Redmond
    • Heckerman, D.1
  • 13
    • 79958782255 scopus 로고    scopus 로고
    • Learning Bayesian networks: Approaches and issues
    • Accessed 4 August 2011, doi:10.1017/S0269888910000251
    • Daly R, Shen Q, Aitken S (2011) Learning Bayesian networks: approaches and issues. Knowl Eng Rev 26:99-157. Available: http://www.journals.cambridge. org/abstract-S0269888910000251. Accessed 4 August 2011 doi:10.1017/ S0269888910000251.
    • (2011) Knowl Eng Rev , vol.26 , pp. 99-157
    • Daly, R.1    Shen, Q.2    Aitken, S.3
  • 15
    • 80054033667 scopus 로고    scopus 로고
    • Incorporating expert knowledge when learning Bayesian network structure: A medical case study
    • Accessed 1 February 2013, doi:10.1016/j.artmed.2011.08.004. PubMed: 21958683
    • Flores MJ, Nicholson AE, Brunskill A, Korb KB, Mascaro S (2011) Incorporating expert knowledge when learning Bayesian network structure: a medical case study. Artif Intell Med 53:181-204. Available: http://www.ncbi.nlm. nih.gov/pubmed/21958683. Accessed 1 February 2013 doi:10.1016/j.artmed.2011.08. 004. PubMed: 21958683.
    • (2011) Artif Intell Med , vol.53 , pp. 181-204
    • Flores, M.J.1    Nicholson, A.E.2    Brunskill, A.3    Korb, K.B.4    Mascaro, S.5
  • 16
    • 84871805567 scopus 로고    scopus 로고
    • Clinical decision support and individualized prediction of survival in colon cancer: Bayesian belief network model
    • Accessed 25 May 2013, doi:10.1245/s10434-012-2555-4. PubMed: 22899001
    • Stojadinovic A, Bilchik A, Smith D, Eberhardt JS, Ben et al Ward E. (2013) Clinical decision support and individualized prediction of survival in colon cancer: bayesian belief network model. Ann Surg Oncol 20:161-174. Available: http://www.ncbi.nlm.nih.gov/pubmed/22899001. Accessed 25 May 2013 doi:10.1245/s10434-012-2555-4. PubMed: 22899001.
    • (2013) Ann Surg Oncol , vol.20 , pp. 161-174
    • Stojadinovic, A.1    Bilchik, A.2    Smith, D.3    Eberhardt, J.S.4    Ben5    Ward, E.6
  • 17
    • 77950819874 scopus 로고    scopus 로고
    • Survival prediction in lung cancer treated with radiotherapy: Bayesian networks vs support vector machines in handling missing data
    • Accessed 14 March 2012
    • Dekker A, Dehing-Oberije C, Ruysscher D De, Lambin P, Komati K et al. (2009) Survival Prediction in Lung Cancer Treated with Radiotherapy: Bayesian Networks vs. Support Vector Machines in Handling Missing Data. Int Conf Mach Learn Appl. pp. 494-497. Available: http://ieeexplore.ieee.org/lpdocs/epic03/ wrapper.htm?arnumber=5381445. Accessed 14 March 2012
    • (2009) Int Conf Mach Learn Appl , pp. 494-497
    • Dekker, A.1    Dehing-Oberije, C.2    De Ruysscher, D.3    Lambin, P.4    Komati, K.5
  • 18
    • 78049408782 scopus 로고    scopus 로고
    • Accessed 25 September 2011
    • WHO (2012) Cancer fact sheet No 297. Available: http://www.who.int/ mediacentre/factsheets/fs297/en/. Accessed 25 September 2011
    • (2012) Cancer Fact Sheet No 297
  • 19
    • 33744961676 scopus 로고    scopus 로고
    • Applications of machine learning in cancer prediction and prognosis
    • Cruz JA, Wishart DS (2006) Applications of machine learning in cancer prediction and prognosis. Cancer INFORM 2:59-77. Available: http://www. pubmedcentral.nih.gov/articlerender.fcgi?artid=2675494&tool= pmcentrez&rendertype=abstract. PubMed: 19458758. (Pubitemid 43854386)
    • (2006) Cancer Informatics , vol.2 , pp. 59-77
    • Cruz, J.A.1    Wishart, D.S.2
  • 20
    • 77954583025 scopus 로고    scopus 로고
    • A Bayesian Network to assist mammography interpretation
    • Rubin D, Burnside E, Shachter R (2005) A Bayesian Network to assist mammography interpretation. Oper Res Heal Care: 695-720. Available: http://www.springerlink.com/index/g444106246k06536.pdf.
    • (2005) Oper Res Heal Care , pp. 695-720
    • Rubin, D.1    Burnside, E.2    Shachter, R.3
  • 21
    • 33747891871 scopus 로고    scopus 로고
    • Predicting the prognosis of breast cancer by integrating clinical and microarray data with Bayesian networks
    • DOI 10.1093/bioinformatics/btl230
    • Gevaert O, De Smet F, Timmerman D, Moreau Y, De Moor B (2006) Predicting the prognosis of breast cancer by integrating clinical and microarray data with Bayesian networks. Bioinformatics 22:e184-e190. Available: http://www.ncbi.nlm. nih.gov/pubmed/16873470. Accessed 23 May 2013 doi:10.1093/bioinformatics/btl230. PubMed: 16873470. (Pubitemid 44288285)
    • (2006) Bioinformatics , vol.22 , Issue.14
    • Gevaert, O.1    De Smet, F.2    Timmerman, D.3    Moreau, Y.4    De Moor, B.5
  • 23
    • 40049100020 scopus 로고    scopus 로고
    • A Bayesian derived network of breast pathology co-occurrence
    • Accessed 15 July 2013, doi:10.1016/j.jbi.2007.12.005. PubMed: 18262472
    • Maskery SM, Hu H, Hooke J, Shriver CD, Liebman MN (2008) A Bayesian derived network of breast pathology co-occurrence. J Biomed Inform 41:242-250. Available: http://www.ncbi.nlm.nih.gov/pubmed/18262472. Accessed 15 July 2013 doi:10.1016/j.jbi.2007.12.005. PubMed: 18262472.
    • (2008) J Biomed Inform , vol.41 , pp. 242-250
    • Maskery, S.M.1    Hu, H.2    Hooke, J.3    Shriver, C.D.4    Liebman, M.N.5
  • 25
    • 69449101715 scopus 로고    scopus 로고
    • Development of a clinical decision model for thyroid nodules
    • Accessed 23 June 2013 doi:10.1186/1471-2482-9-12. PubMed: 19664278
    • Stojadinovic A, Peoples GE, Libutti SK, Henry LR, Eberhardt J et al. (2009) Development of a clinical decision model for thyroid nodules. BMC Surg 9:12. Available: http://www.pubmedcentral.nih.gov/articlerender.fcgi? artid=2731077&tool=pmcentrez&rendertype=abstract. Accessed 23 June 2013 doi:10.1186/1471-2482-9-12. PubMed: 19664278.
    • (2009) BMC Surg , vol.9 , pp. 12
    • Stojadinovic, A.1    Peoples, G.E.2    Libutti, S.K.3    Henry, L.R.4    Eberhardt, J.5
  • 26
    • 80052891202 scopus 로고    scopus 로고
    • Combining PubMed knowledge and EHR data to develop a weighted bayesian network for pancreatic cancer prediction
    • Accessed 25 May 2013, doi:10.1016/j.jbi.2011.05.004. PubMed: 21642013
    • Zhao D, Weng C (2011) Combining PubMed knowledge and EHR data to develop a weighted bayesian network for pancreatic cancer prediction. J Biomed Inform 44:859-868. Available: http://www.pubmedcentral.nih.gov/articlerender.fcgi? artid=3174321&tool=pmcentrez&rendertype=abstract. Accessed 25 May 2013 doi:10.1016/j.jbi.2011.05.004. PubMed: 21642013.
    • (2011) J Biomed Inform , vol.44 , pp. 859-868
    • Zhao, D.1    Weng, C.2
  • 27
    • 79952977901 scopus 로고    scopus 로고
    • A Bayesian network approach for modeling local failure in lung cancer
    • Accessed 14 March 2012, doi:10.1088/0031-9155/56/6/008. PubMed: 21335651
    • Oh JH, Craft J, Al Lozi R, Vaidya M, Meng Y et al. (2011) A Bayesian network approach for modeling local failure in lung cancer. Phys Med Biol 56:1635-1651. Available: http://www.ncbi.nlm.nih.gov/pubmed/21335651. Accessed 14 March 2012 doi:10.1088/0031-9155/56/6/008. PubMed: 21335651.
    • (2011) Phys Med Biol , vol.56 , pp. 1635-1651
    • Oh, J.H.1    Craft, J.2    Al Lozi, R.3    Vaidya, M.4    Meng, Y.5
  • 28
    • 0031660017 scopus 로고    scopus 로고
    • Computer-based decision support in the management of primary gastric non-Hodgkin lymphoma
    • Lucas PJ, Boot H, Taal BG (1998) Computer-based decision support in the management of primary gastric non-Hodgkin lymphoma. Methods Inf Med 37:206-219. Available: http://www.ncbi.nlm.nih.gov/pubmed/9787619. PubMed: 9787619. (Pubitemid 28450056)
    • (1998) Methods of Information in Medicine , vol.37 , Issue.3 , pp. 206-219
    • Lucas, P.J.F.1    Boot, H.2    Taal, B.G.3
  • 30
    • 77954332103 scopus 로고    scopus 로고
    • Early stage and locally advanced (non-metastatic) non-small-cell lung cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up
    • Accessed 5 October 2012
    • Crinò L, Weder W, van Meerbeeck J, Felip E (2010) Early stage and locally advanced (non-metastatic) non-small-cell lung cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol 21 Suppl 5:v103-115. Available: http://www.ncbi.nlm.nih.gov/pubmed/20555058. Accessed 5 October 2012
    • (2010) Ann Oncol , vol.21 , Issue.SUPPL. 5
    • Crinò, L.1    Weder, W.2    Van Meerbeeck, J.3    Felip, E.4
  • 32
    • 84891927688 scopus 로고    scopus 로고
    • Edition 3
    • International Classification of Diseases for Oncology (2000) Morphology of Neoplasms, Edition 3. Available: http://www.wolfbane.com/icd/icdo3.htm.
    • (2000) Morphology of Neoplasms
  • 33
    • 77949847591 scopus 로고    scopus 로고
    • Accessed 20 August 2010
    • IHTSDO (n. d.) About SNOMED CT. Available: http://www.ihtsdo.org/snomed- ct/snomed-ct0/. Accessed 20 August 2010
    • About SNOMED CT
  • 34
    • 83255194072 scopus 로고    scopus 로고
    • Variation in surgical resection for lung cancer in relation to survival: Population-based study in England 2004-2006
    • Accessed 7 February 2013, doi:10.1016/S0959-8049 12 70117-X. PubMed: 21871792
    • Riaz SP, Lüchtenborg M, Jack RH, Coupland VH, Linklater KM et al. (2012) Variation in surgical resection for lung cancer in relation to survival: population-based study in England 2004-2006. Eur J Cancer 48:54-60. Available: http://www.ncbi.nlm.nih.gov/pubmed/21871792. Accessed 7 February 2013 doi:10.1016/S0959-8049 (12) 70117-X. PubMed: 21871792.
    • (2012) Eur J Cancer , vol.48 , pp. 54-60
    • Riaz, S.P.1    Lüchtenborg, M.2    Jack, R.H.3    Coupland, V.H.4    Linklater, K.M.5
  • 36
    • 79151478658 scopus 로고    scopus 로고
    • Cancer survival in Australia, Canada, Denmark, Norway, Sweden, and the UK, 1995-2007 (the International Cancer Benchmarking Partnership): An analysis of population-based cancer registry data
    • doi:10.1016/S0140-6736 10 62231-3. PubMed: 21183212
    • Coleman MP, Forman D, Bryant H, Butler J, Richards M (2011) Cancer survival in Australia, Canada, Denmark, Norway, Sweden, and the UK, 1995-2007 (the International Cancer Benchmarking Partnership): an analysis of population-based cancer registry data. Lancet 377:127-138. Available: http://www.pubmedcentral.nih.gov/articlerender.fcgi? artid=3018568&tool= pmcentrez&rendertype=abstract. doi:10.1016/S0140-6736 (10) 62231-3. PubMed: 21183212.
    • (2011) Lancet , vol.377 , pp. 127-138
    • Coleman, M.P.1    Forman, D.2    Bryant, H.3    Butler, J.4    Richards, M.5
  • 37
    • 77951990845 scopus 로고    scopus 로고
    • National comparisons of lung cancer survival in England, Norway and Sweden 2001-2004: Differences occur early in follow-up
    • Accessed 22 February 2013, doi:10.1136/thx.2009.124222. PubMed: 20435867
    • Holmberg L, Sandin F, Bray F, Richards M, Spicer J et al. (2010) National comparisons of lung cancer survival in England, Norway and Sweden 2001-2004: differences occur early in follow-up. Thorax 65:436-441. Available: http://www.ncbi.nlm.nih.gov/pubmed/20435867. Accessed 22 February 2013 doi:10.1136/thx.2009.124222. PubMed: 20435867.
    • (2010) Thorax , vol.65 , pp. 436-441
    • Holmberg, L.1    Sandin, F.2    Bray, F.3    Richards, M.4    Spicer, J.5
  • 39
    • 77950668375 scopus 로고    scopus 로고
    • A Bayesian network approach to feature selection in mass spectrometry data
    • doi: 10.1186/1471-2105-11-177. PubMed: 20377906
    • Kuschner KW, Malyarenko DI, Cooke WE, Cazares LH, Semmes OJ et al. (2010) A Bayesian network approach to feature selection in mass spectrometry data. BMC Bioinformatics 11:177. Available: http://www.pubmedcentral.nih.gov/ articlerender.fcgi? artid=3098056&tool=pmcentrez&rendertype=abstract. doi: 10.1186/1471-2105-11-177. PubMed: 20377906.
    • (2010) BMC Bioinformatics , vol.11 , pp. 177
    • Kuschner, K.W.1    Malyarenko, D.I.2    Cooke, W.E.3    Cazares, L.H.4    Semmes, O.J.5
  • 40
    • 84861203032 scopus 로고    scopus 로고
    • Multivariate discretization for Bayesian Network structure learning in robot grasping
    • Song D, Ek CH, Huebner K, Kragic D (2011) Multivariate discretization for Bayesian Network structure learning in robot grasping. 2011 IEEE Int Conf Robot Autom. pp. 1944-1950. Available: http://ieeexplore.ieee.org/lpdocs/epic03/ wrapper.htm?arnumber=5979666.
    • (2011) 2011 IEEE Int Conf Robot Autom , pp. 1944-1950
    • Song, D.1    Ek, C.H.2    Huebner, K.3    Kragic, D.4
  • 42
    • 77952419524 scopus 로고    scopus 로고
    • Missing covariate data in medical research: To impute is better than to ignore
    • Accessed 27 April 2013
    • Janssen KJM, Donders AR, Harrell FE, Vergouwe Y, Chen Q, et al. (2010) Missing covariate data in medical research: to impute is better than to ignore. J Clin Epidemiol 63:721-727. Available: http://www.ncbi.nlm.nih.gov/pubmed/ 20338724. Accessed 27 April 2013
    • (2010) J Clin Epidemiol , vol.63 , pp. 721-727
    • Janssen, K.J.M.1    Donders, A.R.2    Harrell, F.E.3    Vergouwe, Y.4    Chen, Q.5
  • 43
    • 51349151355 scopus 로고    scopus 로고
    • Analysis of incomplete multivariate data
    • Schafer JL (1997) Analysis of Incomplete Multivariate Data. Chapman & Hall. Available: http://www.springerlink.com/index/10.1007/BF02680460.
    • (1997) Chapman & Hall
    • Schafer, J.L.1
  • 44
    • 33744830564 scopus 로고    scopus 로고
    • Can one assess whether missing data are missing at random in medical studies?
    • DOI 10.1191/0962280206sm448oa
    • Potthoff RF, Tudor GE, Pieper KS, Hasselblad V (2006) Can one assess whether missing data are missing at random in medical studies? Stat Methods Med Res 15:213-234. Available: http://smm.sagepub.com/cgi/doi/10.1191/ 0962280206sm448oa. Accessed 21 May 2013 doi:10.1191/0962280206sm448oa. PubMed: 16768297. (Pubitemid 43833929)
    • (2006) Statistical Methods in Medical Research , vol.15 , Issue.3 , pp. 213-234
    • Potthoff, R.F.1    Tudor, G.E.2    Pieper, K.S.3    Hasselblad, V.4
  • 45
    • 60549085055 scopus 로고    scopus 로고
    • Missing data analysis: Making it work in the real world
    • Accessed 17 October 2013, doi:10.1146/annurev. psych.58.110405.085530. PubMed: 18652544
    • Graham JW (2009) Missing data analysis: making it work in the real world. Annu Rev Psychol 60:549-576. Available: http://www.ncbi.nlm.nih.gov/pubmed/ 18652544. Accessed 17 October 2013 doi:10.1146/annurev. psych.58.110405.085530. PubMed: 18652544.
    • (2009) Annu Rev Psychol , vol.60 , pp. 549-576
    • Graham, J.W.1
  • 46
    • 37849052351 scopus 로고    scopus 로고
    • Exploiting missing clinical data in Bayesian network modeling for predicting medical problems
    • Accessed 29 April 2013, doi:10.1016/j.jbi.2007.06.001. PubMed: 17625974
    • Lin J-H, Haug PJ (2008) Exploiting missing clinical data in Bayesian network modeling for predicting medical problems. J Biomed Inform 41:1-14. Available: http://www.ncbi.nlm.nih.gov/pubmed/17625974. Accessed 29 April 2013 doi:10.1016/j.jbi.2007.06.001. PubMed: 17625974.
    • (2008) J Biomed Inform , vol.41 , pp. 1-14
    • Lin, J.-H.1    Haug, P.J.2
  • 47
    • 47649083402 scopus 로고    scopus 로고
    • Generative and discriminative classifiers: Naive bayes and logistic regression
    • Mitchell TM (2010) Generative and Discriminative Classifiers: Naive Bayes and Logistic Regression. Machine Learning: 1-17.
    • (2010) Machine Learning , pp. 1-17
    • Mitchell, T.M.1
  • 48
    • 84891934204 scopus 로고    scopus 로고
    • PostgreSQL Global Development Group
    • The PostgreSQL Global Development Group (2012) PostgreSQL JDBC Driver.
    • (2012) PostgreSQL JDBC Driver
  • 50
    • 0033083435 scopus 로고    scopus 로고
    • Using probabilistic and decision-theoretic methods in treatment and prognosis modeling
    • DOI 10.1016/S0933-3657(98)00048-7, PII S0933365798000487
    • Andreassen S, Riekehr Ch, Kristensen B, Schønheyder H, Leibovici L (1999) Using probabilistic and decision-theoretic methods in treatment and prognosis modelling. Artif Intell Med 15:121-134. doi:10.1016/S0933-3657 (98) 00048-7. PubMed: 10082177. (Pubitemid 29079476)
    • (1999) Artificial Intelligence in Medicine , vol.15 , Issue.2 , pp. 121-134
    • Andreassen, S.1    Riekehr, C.2    Kristensen, B.3    Schonheyder, H.C.4    Leibovici, L.5
  • 51
    • 0036109175 scopus 로고    scopus 로고
    • Probabilities for a probabilistic network: A case study in oesophageal cancer
    • DOI 10.1016/S0933-3657(02)00012-X, PII S093336570200012X
    • Van der Gaag LC, Renooij S, Witteman CL, Aleman BM, Taal BG (2002) Probabilities for a probabilistic network: a case study in oesophageal cancer. Artif Intell Med 25:123-148. Available: http://www.ncbi.nlm.nih.gov/pubmed/ 12031603. doi:10.1016/S0933-3657 (02) 00012-X. PubMed: 12031603. (Pubitemid 34553372)
    • (2002) Artificial Intelligence in Medicine , vol.25 , Issue.2 , pp. 123-148
    • Van Der Gaag, L.C.1    Renooij, S.2    Witteman, C.L.M.3    Aleman, B.M.P.4    Taal, B.G.5
  • 52
    • 84947431988 scopus 로고    scopus 로고
    • NasoNet, joining bayesian networks, and time to model nasopharyngeal cancer spread
    • Artificial Intelligence in Medicine
    • Galán SF, Aguado F, Díez FJ, Mira J (2001) NasoNet, Joining Bayesian Networks and Time to Model Nasopharyngeal Cancer Spread. Artif Intell Med: 207-216. (Pubitemid 33301606)
    • (2001) Lecture Notes in Computer Science , Issue.2101 , pp. 207-216
    • Galan, S.F.1    Aguado, F.2    Diez, F.J.3    Mira, J.4
  • 55
    • 0034235303 scopus 로고    scopus 로고
    • A probabilistic and decision-theoretic approach to the management of infectious disease at the ICU
    • DOI 10.1016/S0933-3657(00)00048-8, PII S0933365700000488
    • Lucas PJ, de Bruijn NC, Schurink K, Hoepelman A (2000) A probabilistic and decision-theoretic approach to the management of infectious disease at the ICU. Artif Intell Med 19:251-279. Available: http://www.ncbi.nlm.nih.gov/pubmed/ 10906615. doi:10.1016/S0933-3657 (00) 00048-8. PubMed: 10906615. (Pubitemid 30445219)
    • (2000) Artificial Intelligence in Medicine , vol.19 , Issue.3 , pp. 251-279
    • Lucas, P.J.F.1    De Bruijn, N.C.2    Schurink, K.3    Hoepelman, A.4
  • 56
    • 0001775899 scopus 로고
    • An Algorithm for Deciding if a Set of Observed Independencies Has a Causal Explanation
    • Verma T, Pearl J (1992) An Algorithm for Deciding if a Set of Observed Independencies Has a Causal Explanation. Uncertainty in Artificial Intelligence: 323-330.
    • (1992) Uncertainty in Artificial Intelligence , pp. 323-330
    • Verma, T.1    Pearl, J.2
  • 59
    • 84972488038 scopus 로고
    • Bayesian analysis in expert systems
    • doi:10.1214/ss/1177010888
    • Spiegelhalter D, Dawid A, Lauritzen SL, Cowell R (1993) Bayesian analysis in expert systems. Stat Sci 8:219-282. doi:10.1214/ss/1177010888.
    • (1993) Stat Sci , vol.8 , pp. 219-282
    • Spiegelhalter, D.1    Dawid, A.2    Lauritzen, S.L.3    Cowell, R.4
  • 63
    • 21844520724 scopus 로고
    • Bayesian graphical models for discrete data
    • doi:10.2307/1403615
    • Madigan D, York J (1995) Bayesian Graphical Models for Discrete Data. Int Stat Rev 63:215-232. doi:10.2307/1403615.
    • (1995) Int Stat Rev , vol.63 , pp. 215-232
    • Madigan, D.1    York, J.2
  • 67
    • 3843106208 scopus 로고    scopus 로고
    • An empirical Study of the naive Bayes classifier
    • Rish I (2001) An empirical Study of the naive Bayes classifier. IJCAI.
    • (2001) IJCAI
    • Rish, I.1
  • 69
    • 0032544993 scopus 로고    scopus 로고
    • What's the relative risk? A method of correcting the odds ratio in cohort studies of common outcomes
    • Zhang J, Yu KF (1998) What's the relative risk? A method of correcting the odds ratio in cohort studies of common outcomes. JAMA 280:1690-1691. Available: http://www.ncbi.nlm.nih.gov/pubmed/9832001. doi:10.1001/jama.280.19. 1690. PubMed: 9832001. (Pubitemid 28532993)
    • (1998) Journal of the American Medical Association , vol.280 , Issue.19 , pp. 1690-1691
    • Zhang, J.1    Yu, K.F.2
  • 70
    • 0000521473 scopus 로고
    • Ridge estimators in logistic regression
    • doi:10.2307/2347628
    • Le Cessie S, Van Howelingen JC (1992) Ridge Estimators in Logistic Regression. Appl Stat 41:191-201. doi:10.2307/2347628.
    • (1992) Appl Stat , vol.41 , pp. 191-201
    • Le Cessie, S.1    Van Howelingen, J.C.2
  • 72
    • 0029678894 scopus 로고    scopus 로고
    • Improved use of continuous attributes in C4. 5
    • Quinlan JR (2006) Improved Use of Continuous Attributes in C4. 5. J Artifcial Intell Res 4:77-90.
    • (2006) J Artifcial Intell Res , vol.4 , pp. 77-90
    • Quinlan, J.R.1
  • 73
    • 0001698979 scopus 로고
    • Bayesian updating in causal probabilistic networks by local computations
    • Jensen F V., Lauritzen SL, Olesen K (1990) Bayesian updating in causal probabilistic networks by local computations. Comput Stat Q 4:269-282
    • (1990) Comput Stat Q , vol.4 , pp. 269-282
    • Jensen, F.V.1    Lauritzen, S.L.2    Olesen, K.3
  • 74
    • 34249887900 scopus 로고    scopus 로고
    • Using Bayesian belief networks in adaptive management
    • DOI 10.1139/X06-108
    • Nyberg J, Brian J, Marcot G, Sulyma R (2006) Using Bayesian belief networks in adaptive management. Can J of Res 3116:3104-3116. doi:10.1139/X06-108. (Pubitemid 46866360)
    • (2006) Canadian Journal of Forest Research , vol.36 , Issue.12 , pp. 3104-3116
    • Nyberg, J.B.1    Marcot, B.G.2    Sulyma, R.3
  • 75
    • 0030952509 scopus 로고    scopus 로고
    • Representation and analysis of medical decision problems with influence diagrams
    • DOI 10.1177/0272989X9701700301
    • Owens DK, Shachter RD, Nease RF (1997) Representation and analysis of medical decision problems with influence diagrams. Med Decis Making 17:241-262. Available: http://www.ncbi.nlm.nih.gov/pubmed/9219185. doi:10.1177/ 0272989X9701700301. PubMed: 9219185. (Pubitemid 27282026)
    • (1997) Medical Decision Making , vol.17 , Issue.3 , pp. 241-262
    • Owens, D.K.1    Shachter, R.D.2    Nease Jr., R.F.3
  • 76
    • 0024038570 scopus 로고
    • Probabilistic inference and influence diagrams
    • doi:1 287/opre.36.4.589
    • Shachter RD (1988) Probabilistic Inference and Influence Diagrams. Oper Res 36:589-605. doi:1 287/opre.36.4.589.
    • (1988) Oper Res , vol.36 , pp. 589-605
    • Shachter, R.D.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.