-
1
-
-
0347303542
-
Antimicrobial peptides from plants
-
doi:10.1080/713608148
-
Broekaert WF, Cammue BPA, De Bolle MFC, Thevissen K, De Samblanx GW et al. (1997) Antimicrobial peptides from plants. Critical Reviews in Plant Sciences 16: 297-323. doi:10.1080/713608148.
-
(1997)
Critical Reviews in Plant Sciences
, vol.16
, pp. 297-323
-
-
Broekaert, W.F.1
Cammue, B.P.A.2
De Bolle, M.F.C.3
Thevissen, K.4
De Samblanx, G.W.5
-
2
-
-
0036886964
-
Plant defensins
-
doi:10.1007/s00425-002-0902-6. PubMed: 12447532
-
Thomma BPHJ, Cammue BPA, Thevissen K (2002) Plant defensins. Planta 216: 193-202. doi:10.1007/s00425-002-0902-6. PubMed: 12447532.
-
(2002)
Planta
, vol.216
, pp. 193-202
-
-
Thomma, B.P.H.J.1
Cammue, B.P.A.2
Thevissen, K.3
-
3
-
-
13844322064
-
Defensins - Components of the innate immune system in plants
-
doi: 10.2174/1389203053027575. PubMed: 15638771
-
Lay FT, Anderson MA (2005) Defensins - components of the innate immune system in plants. Curr Protein Pept Sci 6: 85-101. doi: 10.2174/ 1389203053027575. PubMed: 15638771.
-
(2005)
Curr Protein Pept Sci
, vol.6
, pp. 85-101
-
-
Lay, F.T.1
Anderson, M.A.2
-
4
-
-
67349088413
-
Plant defensins - Prospects for the biological functions and biotechnological properties
-
doi:10.1016/j.peptides.2009.01.018. PubMed: 19428780
-
Carvalho Ade O, Gomes VM (2009) Plant defensins - prospects for the biological functions and biotechnological properties. Peptides 30: 1007-1020. doi:10.1016/j.peptides.2009.01.018. PubMed: 19428780.
-
(2009)
Peptides
, vol.30
, pp. 1007-1020
-
-
Carvalho Ade, O.1
Gomes, V.M.2
-
5
-
-
77954043686
-
Plant defensins: Defense, development and application
-
doi: 10.4161/psb.4.11.9755. PubMed: 20009545
-
Stotz HU, Thomson JG, Wang Y (2009) Plant defensins: defense, development and application. Plant Signal Behav 4: 1010-1012. doi: 10.4161/psb.4.11.9755. PubMed: 20009545.
-
(2009)
Plant Signal Behav
, vol.4
, pp. 1010-1012
-
-
Stotz, H.U.1
Thomson, J.G.2
Wang, Y.3
-
6
-
-
0029347190
-
Plant defensins: Novel antimicrobial peptides as components of the host defense system
-
doi:10.1104/pp.108.4.1353. PubMed: 7659744
-
Broekaert WF, Terras FR, Cammue BP, Osborn RW (1995) Plant defensins: novel antimicrobial peptides as components of the host defense system. Plant Physiol 108: 1353-1358. doi:10.1104/pp.108.4.1353. PubMed: 7659744.
-
(1995)
Plant Physiol
, vol.108
, pp. 1353-1358
-
-
Broekaert, W.F.1
Terras, F.R.2
Cammue, B.P.3
Osborn, R.W.4
-
7
-
-
0026635585
-
Analysis of two novel classes of plant antifungal proteins from radish (Raphanus sativus L.) seeds
-
PubMed: 1639777
-
Terras FR, Schoofs HM, De Bolle MF, Van Leuven F, Rees SB et al. (1992) Analysis of two novel classes of plant antifungal proteins from radish (Raphanus sativus L.) seeds. J Biol Chem 267: 15301-15309. PubMed: 1639777.
-
(1992)
J Biol Chem
, vol.267
, pp. 15301-15309
-
-
Terras, F.R.1
Schoofs, H.M.2
De Bolle, M.F.3
Van Leuven, F.4
Rees, S.B.5
-
8
-
-
80052279915
-
Can plant defensins be sused to engineer durable commercially useful resistance in crop plants?
-
doi:10.1016/j.fbr.2011.07.004
-
Kaur J, Sagaram US, Shah DM (2011) Can plant defensins be sused to engineer durable commercially useful resistance in crop plants? Fungal Biology Reviews 25: 128-135. doi:10.1016/j.fbr.2011.07.004.
-
(2011)
Fungal Biology Reviews
, vol.25
, pp. 128-135
-
-
Kaur, J.1
Sagaram, U.S.2
Shah, D.M.3
-
9
-
-
46449106628
-
The mode of antifungal action of plant, insect and human defensins
-
doi:10.1007/s00018-008-8035-0. PubMed: 18360739
-
Aerts AM, François IE, Cammue BP, Thevissen K (2008) The mode of antifungal action of plant, insect and human defensins. Cell Mol Life Sci 65: 2069-2079. doi:10.1007/s00018-008-8035-0. PubMed: 18360739.
-
(2008)
Cell Mol Life Sci
, vol.65
, pp. 2069-2079
-
-
Aerts, A.M.1
François, I.E.2
Cammue, B.P.3
Thevissen, K.4
-
11
-
-
12944249531
-
A gene encoding a sphingolipid biosynthesis enzyme determines the sensitivity of Saccharomyces cerevisiae to an antifungal plant defensin from dahlia (Dahlia merckii)
-
doi:10.1073/pnas.160077797. PubMed: 10931938
-
Thevissen K, Cammue BP, Lemaire K, Winderickx J, Dickson RC et al. (2000) A gene encoding a sphingolipid biosynthesis enzyme determines the sensitivity of Saccharomyces cerevisiae to an antifungal plant defensin from dahlia (Dahlia merckii). Proc Natl Acad Sci U S A 97: 9531-9536. doi:10.1073/pnas.160077797. PubMed: 10931938.
-
(2000)
Proc Natl Acad Sci U S A
, vol.97
, pp. 9531-9536
-
-
Thevissen, K.1
Cammue, B.P.2
Lemaire, K.3
Winderickx, J.4
Dickson, R.C.5
-
12
-
-
1042278916
-
Interactions of antifungal plant defensins with fungal membrane components
-
doi:10.1016/j.peptides.2003.09.014. PubMed: 15019201
-
Thevissen K, Ferket KK, François IE, Cammue BP (2003) Interactions of antifungal plant defensins with fungal membrane components. Peptides 24: 1705-1712. doi:10.1016/j.peptides.2003.09.014. PubMed: 15019201.
-
(2003)
Peptides
, vol.24
, pp. 1705-1712
-
-
Thevissen, K.1
Ferket, K.K.2
François, I.E.3
Cammue, B.P.4
-
13
-
-
27944484405
-
Fungal sphingolipids as targets for the development of selective antifungal therapeutics
-
doi: 10.2174/138945005774912771. PubMed: 16375675
-
Thevissen K, Francois IE, Aerts AM, Cammue BP (2005) Fungal sphingolipids as targets for the development of selective antifungal therapeutics. Curr Drug Targets 6: 923-928. doi: 10.2174/138945005774912771. PubMed: 16375675.
-
(2005)
Curr Drug Targets
, vol.6
, pp. 923-928
-
-
Thevissen, K.1
Francois, I.E.2
Aerts, A.M.3
Cammue, B.P.4
-
14
-
-
84863396190
-
The plant defensin RsAFP2 induces cell wall stress, septin mislocalization and accumulation of ceramides in Candida albicans
-
doi:10.1111/j.1365-2958.2012.08017.x. PubMed: 22384976
-
Thevissen K, de Mello Tavares P, Xu D, Blankenship J, Vandenbosch D et al. (2012) The plant defensin RsAFP2 induces cell wall stress, septin mislocalization and accumulation of ceramides in Candida albicans. Mol Microbiol 84: 166-180. doi:10.1111/j.1365-2958.2012.08017.x. PubMed: 22384976.
-
(2012)
Mol Microbiol
, vol.84
, pp. 166-180
-
-
Thevissen, K.1
De Mello Tavares, P.2
Xu, D.3
Blankenship, J.4
Vandenbosch, D.5
-
15
-
-
0033981958
-
Specific binding sites for an antifungal plant defensin from dahlia (Dahlia merckii) on fungal cells are required for antifungal activity
-
doi:10.1094/MPMI.2000.13.1.54. PubMed: 10656585
-
Thevissen K, Osborn RW, Acland DP, Broekaert WF (2000) Specific binding sites for an antifungal plant defensin from dahlia (Dahlia merckii) on fungal cells are required for antifungal activity. Mol Plant Microbe Interact 13: 54-61. doi:10.1094/MPMI.2000.13.1.54. PubMed: 10656585.
-
(2000)
Mol Plant Microbe Interact
, vol.13
, pp. 54-61
-
-
Thevissen, K.1
Osborn, R.W.2
Acland, D.P.3
Broekaert, W.F.4
-
16
-
-
35448933741
-
Glucosylceramide synthase is essential for alfalfa defensin-mediated growth inhibition but not for pathogenicity of Fusarium graminearum
-
Ramamoorthy V, Cahoon EB, Li J, Thokala M, Minto RE et al. (2008) Glucosylceramide synthase is essential for alfalfa defensin-mediated growth inhibition but not for pathogenicity of Fusarium graminearum. Molecular Microbiology 66: 771-786.
-
(2008)
Molecular Microbiology
, vol.66
, pp. 771-786
-
-
Ramamoorthy, V.1
Cahoon, E.B.2
Li, J.3
Thokala, M.4
Minto, R.E.5
-
17
-
-
33846613659
-
Antifungal Pisum sativum defensin 1 interacts with Neurospora crassa cyclin F related to the cell cycle
-
doi: 10.1021/bi061441j. PubMed: 17240982
-
Lobo DS, Pereira IB, Fragel-Madeira L, Medeiros LN, Cabral LM et al. (2007) Antifungal Pisum sativum defensin 1 interacts with Neurospora crassa cyclin F related to the cell cycle. Biochemistry 46: 987-996. doi: 10.1021/bi061441j. PubMed: 17240982.
-
(2007)
Biochemistry
, vol.46
, pp. 987-996
-
-
Lobo, D.S.1
Pereira, I.B.2
Fragel-Madeira, L.3
Medeiros, L.N.4
Cabral, L.M.5
-
18
-
-
47249102056
-
The plant defensin, NaD1, enters the cytoplasm of Fusarium oxysporum hyphae
-
doi:10.1074/jbc.M709867200. PubMed: 18339623
-
van der Weerden NL, Lay FT, Anderson MA (2008) The plant defensin, NaD1, enters the cytoplasm of Fusarium oxysporum hyphae. J Biol Chem 283: 14445-14452. doi:10.1074/jbc.M709867200. PubMed: 18339623.
-
(2008)
J Biol Chem
, vol.283
, pp. 14445-14452
-
-
Van Der Weerden, N.L.1
Lay, F.T.2
Anderson, M.A.3
-
19
-
-
78549295936
-
Permeabilization of fungal hyphae by the plant defensin NaD1 occurs through a cell wall-dependent process
-
doi:10.1074/jbc.M110.134882. PubMed: 20861017
-
van der Weerden NL, Hancock RE, Anderson MA (2010) Permeabilization of fungal hyphae by the plant defensin NaD1 occurs through a cell wall-dependent process. J Biol Chem 285: 37513-37520. doi:10.1074/jbc.M110.134882. PubMed: 20861017.
-
(2010)
J Biol Chem
, vol.285
, pp. 37513-37520
-
-
Van Der Weerden, N.L.1
Hancock, R.E.2
Anderson, M.A.3
-
20
-
-
2442515355
-
Multidimensional signatures in antimicrobial peptides
-
doi: 10.1073/pnas.0401567101. PubMed: 15118082
-
Yount NY, Yeaman MR (2004) Multidimensional signatures in antimicrobial peptides. Proc Natl Acad Sci U S A 101: 7363-7368. doi: 10.1073/pnas.0401567101. PubMed: 15118082.
-
(2004)
Proc Natl Acad Sci U S A
, vol.101
, pp. 7363-7368
-
-
Yount, N.Y.1
Yeaman, M.R.2
-
21
-
-
15644372264
-
Mutational analysis of a plant defensin from radish (Raphanus sativus L.) reveals two adjacent sites important for antifungal activity
-
doi:10.1074/jbc.272.2.1171. PubMed: 8995418
-
De Samblanx GW, Goderis IJ, Thevissen K, Raemaekers R, Fant F et al. (1997) Mutational analysis of a plant defensin from radish (Raphanus sativus L.) reveals two adjacent sites important for antifungal activity. J Biol Chem 272: 1171-1179. doi:10.1074/jbc.272.2.1171. PubMed: 8995418.
-
(1997)
J Biol Chem
, vol.272
, pp. 1171-1179
-
-
De Samblanx, G.W.1
Goderis, I.J.2
Thevissen, K.3
Raemaekers, R.4
Fant, F.5
-
22
-
-
79954591422
-
Structure-Activity determinants in antifungal plant defensins MsDef1 and MtDef4 with different modes of action against Fusarium graminearum
-
doi:10.1371/journal.pone.0018550. PubMed: 21533249
-
Sagaram US, Pandurangi R, Kaur J, Smith TJ, Shah DM (2011) Structure-Activity determinants in antifungal plant defensins MsDef1 and MtDef4 with different modes of action against Fusarium graminearum. PLOS ONE 6: e18550. doi:10.1371/journal.pone.0018550. PubMed: 21533249.
-
(2011)
PLOS ONE
, vol.6
-
-
Sagaram, U.S.1
Pandurangi, R.2
Kaur, J.3
Smith, T.J.4
Shah, D.M.5
-
23
-
-
84867994597
-
Subcellular targeting of an evolutionarily conserved plant defensin MtDef4.2 determines the outcome of plant-pathogen interaction in transgenic Arabidopsis
-
doi:10.1111/j.1364-3703.2012.00813.x. PubMed: 22776629
-
Kaur J, Thokala M, Robert-Seilaniantz A, Zhao P, Peyret H et al. (2012) Subcellular targeting of an evolutionarily conserved plant defensin MtDef4.2 determines the outcome of plant-pathogen interaction in transgenic Arabidopsis. Mol Plant Pathol 13: 1032-1046. doi:10.1111/j.1364-3703.2012.00813.x. PubMed: 22776629.
-
(2012)
Mol Plant Pathol
, vol.13
, pp. 1032-1046
-
-
Kaur, J.1
Thokala, M.2
Robert-Seilaniantz, A.3
Zhao, P.4
Peyret, H.5
-
24
-
-
34248646785
-
Two mitogen-activated protein kinase signalling cascades mediate basal resistance to antifungal plant defensins in Fusarium graminearum
-
doi:10.1111/j.1462-5822.2006.00887.x. PubMed: 17253976
-
Ramamoorthy V, Zhao X, Snyder AK, Xu J-R, Shah DM (2007) Two mitogen-activated protein kinase signalling cascades mediate basal resistance to antifungal plant defensins in Fusarium graminearum. Cell Microbiol 9: 1491-1506. doi:10.1111/j.1462-5822.2006.00887.x. PubMed: 17253976.
-
(2007)
Cell Microbiol
, vol.9
, pp. 1491-1506
-
-
Ramamoorthy, V.1
Zhao, X.2
Snyder, A.K.3
Xu, J.-R.4
Shah, D.M.5
-
25
-
-
0036301039
-
Solution structure of Pisum sativum defensin 1 by high resolution NMR: Plant defensins, identical backbone with different mechanisms of action
-
doi:10.1006/jmbi. 2001.5252. PubMed: 11812144
-
Almeida MS, Cabral KM, Kurtenbach E, Almeida FC, Valente AP (2002) Solution structure of Pisum sativum defensin 1 by high resolution NMR: plant defensins, identical backbone with different mechanisms of action. J Mol Biol 315: 749-757. doi:10.1006/jmbi. 2001.5252. PubMed: 11812144.
-
(2002)
J Mol Biol
, vol.315
, pp. 749-757
-
-
Almeida, M.S.1
Cabral, K.M.2
Kurtenbach, E.3
Almeida, F.C.4
Valente, A.P.5
-
26
-
-
0034660557
-
Characterization of two novel defensin peptides from pea (Pisum sativum) seeds
-
doi:10.1006/ abbi.2000.1824. PubMed: 10860545
-
Almeida MS, Cabral KMS, Zingali RB, Kurtenbach E (2000) Characterization of two novel defensin peptides from pea (Pisum sativum) seeds. Arch Biochem Biophys 378: 278-286. doi:10.1006/ abbi.2000.1824. PubMed: 10860545.
-
(2000)
Arch Biochem Biophys
, vol.378
, pp. 278-286
-
-
Almeida, M.S.1
Cabral, K.M.S.2
Zingali, R.B.3
Kurtenbach, E.4
-
27
-
-
33747829924
-
Expresso: Automatic incorporation of structural information in multiple sequence alignments using 3D-Coffee
-
doi:10.1093/nar/gkl092. PubMed: 16845081
-
Armougom F, Moretti S, Poirot O, Audic S, Dumas P et al. (2006) Expresso: automatic incorporation of structural information in multiple sequence alignments using 3D-Coffee. Nucleic Acids Res 34: W604-W608. doi:10.1093/nar/gkl092. PubMed: 16845081.
-
(2006)
Nucleic Acids Res
, vol.34
-
-
Armougom, F.1
Moretti, S.2
Poirot, O.3
Audic, S.4
Dumas, P.5
-
28
-
-
0029016182
-
Classical electrostatics in biology and chemistry
-
doi:10.1126/science.7761829. PubMed: 7761829
-
Honig B, Nicholls A (1995) Classical electrostatics in biology and chemistry. Science 268: 1144-1149. doi:10.1126/science.7761829. PubMed: 7761829.
-
(1995)
Science
, vol.268
, pp. 1144-1149
-
-
Honig, B.1
Nicholls, A.2
-
29
-
-
84986486656
-
A rapid finite difference algorithm, utilizing successive over relaxation to solve the Poisson Boltzmann equation
-
doi:10.1002/jcc.540120405
-
Nicholls A, Honig B (1991) A rapid finite difference algorithm, utilizing successive over relaxation to solve the Poisson Boltzmann equation. J Comput Chem 12: 435-445. doi:10.1002/jcc.540120405.
-
(1991)
J Comput Chem
, vol.12
, pp. 435-445
-
-
Nicholls, A.1
Honig, B.2
-
30
-
-
4444221565
-
UCSF Chimera - A Visualization System for Exploratory Research and Analysis
-
doi:10.1002/jcc.20084. PubMed: 15264254
-
Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM et al. (2004) UCSF Chimera - A Visualization System for Exploratory Research and Analysis. J Comput Chem 25: 1605-1612. doi:10.1002/jcc.20084. PubMed: 15264254.
-
(2004)
J Comput Chem
, vol.25
, pp. 1605-1612
-
-
Pettersen, E.F.1
Goddard, T.D.2
Huang, C.C.3
Couch, G.S.4
Greenblatt, D.M.5
-
31
-
-
0015222647
-
The interpretation of protein structures: Estimation of static accesibility
-
doi: 10.1016/0022-2836(71)90324-X. PubMed: 5551392
-
Lee B, Richards FM (1971) The interpretation of protein structures: estimation of static accesibility. J Mol Biol 55: 379-400. doi: 10.1016/0022-2836(71)90324-X. PubMed: 5551392.
-
(1971)
J Mol Biol
, vol.55
, pp. 379-400
-
-
Lee, B.1
Richards, F.M.2
-
32
-
-
0031542184
-
Distributing many points on a sphere
-
doi:10.1007/BF03024423
-
Saff EB, Kuijlaars ABJ (1997) Distributing many points on a sphere. Mathematical Intelligencer 19: 5-11. doi:10.1007/BF03024423.
-
(1997)
Mathematical Intelligencer
, vol.19
, pp. 5-11
-
-
Saff, E.B.1
Kuijlaars, A.B.J.2
-
33
-
-
0028103275
-
The CCP4 suite: Programs for protein crystallography
-
doi:10.1107/S0907444994003112. PubMed: 15299374
-
Bailey S (1994) The CCP4 suite: programs for protein crystallography. Acta Crystallogr D 50: 760-763. doi:10.1107/S0907444994003112. PubMed: 15299374.
-
(1994)
Acta Crystallogr D
, vol.50
, pp. 760-763
-
-
Bailey, S.1
-
34
-
-
80052276859
-
Showdown at the RXLR motif: Serious differences of opinion in how effector proteins from filamentous eukaryotic pathogens enter plant cells
-
doi:10.1073/pnas.1111668108. PubMed: 21856948
-
Ellis JG, Dodds PN (2011) Showdown at the RXLR motif: Serious differences of opinion in how effector proteins from filamentous eukaryotic pathogens enter plant cells. Proc Natl Acad Sci U S A 108: 14381-14382. doi:10.1073/pnas. 1111668108. PubMed: 21856948.
-
(2011)
Proc Natl Acad Sci U S A
, vol.108
, pp. 14381-14382
-
-
Ellis, J.G.1
Dodds, P.N.2
-
35
-
-
58149293042
-
Entering and breaking: Virulence effector proteins of oomycete plant pathogens
-
doi:10.1111/j.1462-5822.2008.01240.x. PubMed: 18783481
-
Tyler BM (2009) Entering and breaking: virulence effector proteins of oomycete plant pathogens. Cell Microbiol 11: 13-20. doi:10.1111/j.1462-5822. 2008.01240.x. PubMed: 18783481.
-
(2009)
Cell Microbiol
, vol.11
, pp. 13-20
-
-
Tyler, B.M.1
-
36
-
-
35948991117
-
A translocation signal for delivery of oomycete effector proteins into host plant cells
-
doi:10.1038/nature06203. PubMed: 17914356
-
Whisson SC, Boevink PC, Moleleki L, Avrova AO, Morales JG et al. (2007) A translocation signal for delivery of oomycete effector proteins into host plant cells. Nature 450: 115-118. doi:10.1038/nature06203. PubMed: 17914356.
-
(2007)
Nature
, vol.450
, pp. 115-118
-
-
Whisson, S.C.1
Boevink, P.C.2
Moleleki, L.3
Avrova, A.O.4
Morales, J.G.5
-
37
-
-
4444295137
-
Differential antifungal and calcium channel-blocking activity among structurally related plant defensins
-
doi: 10.1104/pp.104.040873. PubMed: 15299136
-
Spelbrink RG, Dilmac N, Allen A, Smith TJ, Shah DM et al. (2004) Differential antifungal and calcium channel-blocking activity among structurally related plant defensins. Plant Physiol 135: 2055-2067. doi: 10.1104/pp.104.040873. PubMed: 15299136.
-
(2004)
Plant Physiol
, vol.135
, pp. 2055-2067
-
-
Spelbrink, R.G.1
Dilmac, N.2
Allen, A.3
Smith, T.J.4
Shah, D.M.5
-
38
-
-
77955041178
-
External lipid PI3P mediates entry of eukaryotic pathogen effectors into plant and animal host cells
-
doi:10.1016/j.cell. 2010.06.008. PubMed: 20655469
-
Kale SD, Gu B, Capelluto DG, Dou D, Feldman E et al. (2010) External lipid PI3P mediates entry of eukaryotic pathogen effectors into plant and animal host cells. Cell 142: 284-295. doi:10.1016/j.cell. 2010.06.008. PubMed: 20655469.
-
(2010)
Cell
, vol.142
, pp. 284-295
-
-
Kale, S.D.1
Gu, B.2
Capelluto, D.G.3
Dou, D.4
Feldman, E.5
-
39
-
-
80052302918
-
Phosphatidylinositol monophosphate-binding interface in the oomycete RXLR effector AVR3a is required for its stability in host cells to modulate plant immunity
-
doi:10.1073/pnas.1106002108. PubMed: 21821794
-
Yaeno T, Li H, Chaparro-Garcia A, Schornack S, Koshiba S et al. (2011) Phosphatidylinositol monophosphate-binding interface in the oomycete RXLR effector AVR3a is required for its stability in host cells to modulate plant immunity. Proc Natl Acad Sci U S A 108: 14682-14687. doi:10.1073/pnas. 1106002108. PubMed: 21821794.
-
(2011)
Proc Natl Acad Sci U S A
, vol.108
, pp. 14682-14687
-
-
Yaeno, T.1
Li, H.2
Chaparro-Garcia, A.3
Schornack, S.4
Koshiba, S.5
-
40
-
-
0032528721
-
1H NMR structure of an antifungal γ-thionin protein SIα1: Similarity to scorpion toxins
-
doi:10.1002/(SICI)1097-0134(19980815)32:3. PubMed: 9715910
-
Bloch C Jr., Patel SU, Baud F, Zvelebil MJ, Carr MD et al. (1998) 1H NMR structure of an antifungal γ-thionin protein SIα1: similarity to scorpion toxins. Proteins 32: 334-349. doi:10.1002/(SICI)1097-0134(19980815)32: 3. PubMed: 9715910.
-
(1998)
Proteins
, vol.32
, pp. 334-349
-
-
Bloch Jr., C.1
Patel, S.U.2
Baud, F.3
Zvelebil, M.J.4
Carr, M.D.5
-
41
-
-
0032577318
-
Determination of the three-dimensional solution structure of Raphanus sativus antifungal protein 1 by 1 H NMR
-
doi:10.1006/jmbi.1998.1767. PubMed: 9636715
-
Fant F, Vranken W, Broekaert W, Borremans F (1998) Determination of the three-dimensional solution structure of Raphanus sativus antifungal protein 1 by 1 H NMR. J Mol Biol 279: 257-270. doi:10.1006/jmbi.1998.1767. PubMed: 9636715.
-
(1998)
J Mol Biol
, vol.279
, pp. 257-270
-
-
Fant, F.1
Vranken, W.2
Broekaert, W.3
Borremans, F.4
-
42
-
-
0032707644
-
The three-dimensional solution structure of Aesculus hippocastanum antimicrobial protein 1 determined by 1 H nuclear magnetic resonance
-
doi:10.1002/(SICI)1097-0134(19991115)37:3. PubMed: 10591099
-
Fant F, Vranken WF, Borremans FA (1999) The three-dimensional solution structure of Aesculus hippocastanum antimicrobial protein 1 determined by 1 H nuclear magnetic resonance. Proteins 37: 388-403. doi:10.1002/(SICI)1097- 0134(19991115)37:3. PubMed: 10591099.
-
(1999)
Proteins
, vol.37
, pp. 388-403
-
-
Fant, F.1
Vranken, W.F.2
Borremans, F.A.3
-
43
-
-
0037826923
-
Structure of Petunia hybrida defensin 1, a novel plant defensin with five disulfide bonds
-
doi:10.1021/bi034379o. PubMed: 12846570
-
Janssen BJ, Schirra HJ, Lay FT, Anderson MA, Craik DJ (2003) Structure of Petunia hybrida defensin 1, a novel plant defensin with five disulfide bonds. Biochemistry 42: 8214-8222. doi:10.1021/bi034379o. PubMed: 12846570.
-
(2003)
Biochemistry
, vol.42
, pp. 8214-8222
-
-
Janssen, B.J.1
Schirra, H.J.2
Lay, F.T.3
Anderson, M.A.4
Craik, D.J.5
-
44
-
-
0037260694
-
The three-dimensional solution structure of NaD1, a new floral defensin from Nicotiana alata and its application to a homology model of the crop defense protein alfAFP
-
doi:10.1016/S0022-2836(02)01103-8. PubMed: 12473460
-
Lay FT, Schirra HJ, Scanlon MJ, Anderson MA, Craik DJ (2003) The three-dimensional solution structure of NaD1, a new floral defensin from Nicotiana alata and its application to a homology model of the crop defense protein alfAFP. J Mol Biol 325: 175-188. doi:10.1016/S0022-2836(02)01103-8. PubMed: 12473460.
-
(2003)
J Mol Biol
, vol.325
, pp. 175-188
-
-
Lay, F.T.1
Schirra, H.J.2
Scanlon, M.J.3
Anderson, M.A.4
Craik, D.J.5
-
45
-
-
84862017137
-
Dimerization of plant defensin NaD1 enhances its antifungal activity
-
doi:10.1074/jbc.M111.331009. PubMed: 22511788
-
Lay FT, Mills GD, Poon IK, Cowieson NP, Kirby N et al. (2012) Dimerization of plant defensin NaD1 enhances its antifungal activity. J Biol Chem 287: 19961-19972. doi:10.1074/jbc.M111.331009. PubMed: 22511788.
-
(2012)
J Biol Chem
, vol.287
, pp. 19961-19972
-
-
Lay, F.T.1
Mills, G.D.2
Poon, I.K.3
Cowieson, N.P.4
Kirby, N.5
-
46
-
-
0035852797
-
Translocation of the pAntp peptide and its amphipathic analogue AP-2AL
-
doi:10.1021/bi002019k. PubMed: 11327845
-
Drin G, Déméné H, Temsamani J, Brasseur R (2001) Translocation of the pAntp peptide and its amphipathic analogue AP-2AL. Biochemistry 40: 1824-1834. doi:10.1021/bi002019k. PubMed: 11327845.
-
(2001)
Biochemistry
, vol.40
, pp. 1824-1834
-
-
Drin, G.1
Déméné, H.2
Temsamani, J.3
Brasseur, R.4
-
47
-
-
0024262589
-
Cellular uptake of the tat protein from human immunodeficiency virus
-
doi: 10.1016/0092-8674(88)90263-2. PubMed: 2849510
-
Frankel AD, Pabo CO (1988) Cellular uptake of the tat protein from human immunodeficiency virus. Cell 55: 1189-1193. doi: 10.1016/0092-8674(88)90263-2. PubMed: 2849510.
-
(1988)
Cell
, vol.55
, pp. 1189-1193
-
-
Frankel, A.D.1
Pabo, C.O.2
-
48
-
-
0024209811
-
Autonomous functional domains of chemically synthesized human immunodeficiency virus tat transactivator protein
-
doi: 10.1016/0092-8674(88)90262-0. PubMed: 2849509
-
Green M, Loewenstein PM (1988) Autonomous functional domains of chemically synthesized human immunodeficiency virus tat transactivator protein. Cell 55: 1179-1188. doi: 10.1016/0092-8674(88)90262-0. PubMed: 2849509.
-
(1988)
Cell
, vol.55
, pp. 1179-1188
-
-
Green, M.1
Loewenstein, P.M.2
-
49
-
-
81055138494
-
Entry of oomycete and fungal effectors into plant and animal host cells
-
doi:10.1111/j. 1462-5822.2011.01659.x. PubMed: 21819515
-
Kale SD, Tyler BM (2011) Entry of oomycete and fungal effectors into plant and animal host cells. Cell Microbiol 13: 1839-1848. doi:10.1111/j. 1462-5822.2011.01659.x. PubMed: 21819515.
-
(2011)
Cell Microbiol
, vol.13
, pp. 1839-1848
-
-
Kale, S.D.1
Tyler, B.M.2
-
50
-
-
84862764313
-
Concentration-dependent mechanisms of cell penetration and killing by the de novo-designed antifungal hexapeptide PAF26
-
doi: 10.1111/j.1365-2958.2012.08091.x
-
Muñoz A, Marcos JF, Read ND (2012) Concentration-dependent mechanisms of cell penetration and killing by the de novo-designed antifungal hexapeptide PAF26. Molecular Microbiology 85: 89-106. doi: 10.1111/j.1365-2958. 2012.08091.x.
-
(2012)
Molecular Microbiology
, vol.85
, pp. 89-106
-
-
Muñoz, A.1
Marcos, J.F.2
Read, N.D.3
-
51
-
-
0346460957
-
Cell-penetrating peptides. A reevaluation of the mechanism of cellular uptake
-
PubMed: 12411431
-
Richard JP, Melikov K, Vives E, Ramos C, Verbeure B et al. (2003) Cell-penetrating peptides. A reevaluation of the mechanism of cellular uptake. J Biol Chem 278: 585-590. PubMed: 12411431.
-
(2003)
J Biol Chem
, vol.278
, pp. 585-590
-
-
Richard, J.P.1
Melikov, K.2
Vives, E.3
Ramos, C.4
Verbeure, B.5
-
52
-
-
77958154973
-
Cell biology meets biophysics to unveil the different mechanisms of penetratin internalization in cells
-
doi:10.1016/j.bbamem.2010.02.009. PubMed: 20152795
-
Alves ID, Jiao CY, Aubry S, Aussedat B, Burlina F et al. (2010) Cell biology meets biophysics to unveil the different mechanisms of penetratin internalization in cells. Biochim Biophys Acta 1798: 2231-2239. doi:10.1016/j.bbamem.2010.02.009. PubMed: 20152795.
-
(2010)
Biochim Biophys Acta
, vol.1798
, pp. 2231-2239
-
-
Alves, I.D.1
Jiao, C.Y.2
Aubry, S.3
Aussedat, B.4
Burlina, F.5
-
53
-
-
77951902057
-
Arginine-rich cell-penetrating peptides
-
doi:10.1016/j.febslet. 2009.11.046. PubMed: 19925791
-
Schmidt N, Mishra A, Lai GH, Wong GC (2010) Arginine-rich cell-penetrating peptides. FEBS Lett 584: 1806-1813. doi:10.1016/j.febslet. 2009.11.046. PubMed: 19925791.
-
(2010)
FEBS Lett
, vol.584
, pp. 1806-1813
-
-
Schmidt, N.1
Mishra, A.2
Lai, G.H.3
Wong, G.C.4
-
54
-
-
84874088579
-
Structural basis for interactions of the Phytophthora sojae RxLR effector Avh5 with phosphatidylinositol 3-phosphate and for host cell entry
-
PubMed: 23075041
-
Sun F, Kale SD, Azurmendi HF, Li D, Tyler BM et al. (2013) Structural basis for interactions of the Phytophthora sojae RxLR effector Avh5 with phosphatidylinositol 3-phosphate and for host cell entry. Mol Plant Microbe Interact 26: 330-344. PubMed: 23075041.
-
(2013)
Mol Plant Microbe Interact
, vol.26
, pp. 330-344
-
-
Sun, F.1
Kale, S.D.2
Azurmendi, H.F.3
Li, D.4
Tyler, B.M.5
-
55
-
-
0033571069
-
Phosphatidic acid, a key intermediate in lipid metabolism
-
doi:10.1046/j.1432-1327.1999.00822.x. PubMed: 10542045
-
Athenstaedt K, Daum G (1999) Phosphatidic acid, a key intermediate in lipid metabolism. Eur J Biochem 266: 1-16. doi:10.1046/j.1432-1327.1999.00822.x. PubMed: 10542045.
-
(1999)
Eur J Biochem
, vol.266
, pp. 1-16
-
-
Athenstaedt, K.1
Daum, G.2
-
56
-
-
38549092474
-
Membrane recognition by phospholipid-binding domains
-
doi:10.1038/nrm2328. PubMed: 18216767
-
Lemmon MA (2008) Membrane recognition by phospholipid-binding domains. Nat Rev Mol Cell Biol 9: 99-111. doi:10.1038/nrm2328. PubMed: 18216767.
-
(2008)
Nat Rev Mol Cell Biol
, vol.9
, pp. 99-111
-
-
Lemmon, M.A.1
-
57
-
-
23044460008
-
Phosphatidic acid: A multifunctional stress signaling lipid in plants
-
doi: 10.1016/j.tplants.2005.06.002. PubMed: 16023886
-
Testerink C, Munnik T (2005) Phosphatidic acid: a multifunctional stress signaling lipid in plants. Trends Plant Sci 10: 368-375. doi: 10.1016/j.tplants.2005.06.002. PubMed: 16023886.
-
(2005)
Trends Plant Sci
, vol.10
, pp. 368-375
-
-
Testerink, C.1
Munnik, T.2
-
58
-
-
31844454590
-
Regulatory functions of phospholipase D and phoshatidic acid in plant, growth, development and stress response
-
doi:10.1104/pp.105.068809. PubMed: 16219918
-
Wang X (2005) Regulatory functions of phospholipase D and phoshatidic acid in plant, growth, development and stress response. Plant Physiol 139: 566-573. doi:10.1104/pp.105.068809. PubMed: 16219918.
-
(2005)
Plant Physiol
, vol.139
, pp. 566-573
-
-
Wang, X.1
-
59
-
-
84889087139
-
Inhibition of cereal rust fungi by both class I and II defensins derived from the flowers of Nicotiana alata
-
doi:10.1111/mpp.12066
-
Dracatos PM, van der Weerden NL, Carroll KT, Johnson ED, Plummer KM et al. (2013) Inhibition of cereal rust fungi by both class I and II defensins derived from the flowers of Nicotiana alata. Mol Plant Pathol. doi:10.1111/mpp.12066.
-
(2013)
Mol Plant Pathol
-
-
Dracatos, P.M.1
Van Der Weerden, N.L.2
Carroll, K.T.3
Johnson, E.D.4
Plummer, K.M.5
-
60
-
-
0001749145
-
Nitrate nonutilizing mutants of Fusarium graminearum and their use in vegetative compatibility tests
-
doi:10.1094/Phyto-77-1640
-
Correll JC, Klittich CJR, Leslie JF (1987) Nitrate nonutilizing mutants of Fusarium graminearum and their use in vegetative compatibility tests. Phytopathology 77: 1640-1646. doi:10.1094/Phyto-77-1640.
-
(1987)
Phytopathology
, vol.77
, pp. 1640-1646
-
-
Correll, J.C.1
Klittich, C.J.R.2
Leslie, J.F.3
-
61
-
-
0001016851
-
Macroconidium formation in submerged cultures by a non-sporulating strain of Gibberella zeae
-
doi:10.2307/3756895
-
Cappelini RA, Peterson JL (1965) Macroconidium formation in submerged cultures by a non-sporulating strain of Gibberella zeae. Mycologia 57: 962-966. doi:10.2307/3756895.
-
(1965)
Mycologia
, vol.57
, pp. 962-966
-
-
Cappelini, R.A.1
Peterson, J.L.2
-
62
-
-
0025366161
-
An automated quantitative assay for fungal growth inhibition
-
doi:10.1111/j.1574-6968.1990.tb04174.x
-
Broekaert WF, Terras FR, Cammue BP, Vanderleyden J (1990) An automated quantitative assay for fungal growth inhibition. FEMS Microbiology Letters 69: 55-60. doi:10.1111/j.1574-6968.1990.tb04174.x.
-
(1990)
FEMS Microbiology Letters
, vol.69
, pp. 55-60
-
-
Broekaert, W.F.1
Terras, F.R.2
Cammue, B.P.3
Vanderleyden, J.4
-
63
-
-
0034923785
-
An economical method for (15)N/ (13)C isotopic labeling of proteins expressed in Pichia pastoris
-
doi:10.1093/oxfordjournals.jbchem.a002957. PubMed: 11432775
-
Rodriguez E, Krishna NR (2001) An economical method for (15)N/ (13)C isotopic labeling of proteins expressed in Pichia pastoris. J Biochem 130: 19-22. doi:10.1093/oxfordjournals.jbchem.a002957. PubMed: 11432775.
-
(2001)
J Biochem
, vol.130
, pp. 19-22
-
-
Rodriguez, E.1
Krishna, N.R.2
-
65
-
-
0029364052
-
1H, 13C and 15N Chemical shift referencing in biomolecular NMR
-
PubMed: 8589602
-
Wishart DS, Bigam CG, Yao J, Abildgaard F, Dyson HJ et al. (1995) 1H, 13C and 15N Chemical shift referencing in biomolecular NMR. J Biomol NMR 6: 135-140. PubMed: 8589602.
-
(1995)
J Biomol NMR
, vol.6
, pp. 135-140
-
-
Wishart, D.S.1
Bigam, C.G.2
Yao, J.3
Abildgaard, F.4
Dyson, H.J.5
-
66
-
-
4644340524
-
Automated NMR structure calculation with CYANA
-
PubMed: 15318003
-
Güntert P (2004.) Automated NMR structure calculation with CYANA. Methods Mol Biol 278: 353-378. PubMed: 15318003.
-
(2004)
Methods Mol Biol
, vol.278
, pp. 353-378
-
-
Güntert, P.1
-
67
-
-
0033003335
-
Protein backbone angle restraints from searching a database for chemical shift and sequence homology
-
doi:10.1023/A:1008392405740. PubMed: 10212987
-
Cornilescu G, Delaglio F, Bax A (1999) Protein backbone angle restraints from searching a database for chemical shift and sequence homology. J Biomol NMR 13: 289-301. doi:10.1023/A:1008392405740. PubMed: 10212987.
-
(1999)
J Biomol NMR
, vol.13
, pp. 289-301
-
-
Cornilescu, G.1
Delaglio, F.2
Bax, A.3
-
68
-
-
0033064496
-
Influence of non-bonded parameters on the quality of NMR structures: A new force field for NMR structure calculation
-
doi:10.1023/A:1008365802830. PubMed: 10905826
-
Linge JP, Nilges M (1999) Influence of non-bonded parameters on the quality of NMR structures: A new force field for NMR structure calculation. J Biomol NMR 13: 51-59. doi:10.1023/A:1008365802830. PubMed: 10905826.
-
(1999)
J Biomol NMR
, vol.13
, pp. 51-59
-
-
Linge, J.P.1
Nilges, M.2
-
69
-
-
33847079676
-
Evaluating protein structures determined by structural genomics consortia
-
PubMed: 17186527
-
Bhattacharya A, Tejero R, Montelione GT (2007) Evaluating protein structures determined by structural genomics consortia. Proteins 66: 778-795. PubMed: 17186527.
-
(2007)
Proteins
, vol.66
, pp. 778-795
-
-
Bhattacharya, A.1
Tejero, R.2
Montelione, G.T.3
-
70
-
-
79953882401
-
Phosphatidic acid binds and stimulates Arabidopsis sphingosine kinases
-
doi:10.1074/jbc.M110.190892. PubMed: 21330371
-
Guo L, Mishra G, Taylor K, Wang X (2011) Phosphatidic acid binds and stimulates Arabidopsis sphingosine kinases. J Biol Chem 286: 13336-13345. doi:10.1074/jbc.M110.190892. PubMed: 21330371.
-
(2011)
J Biol Chem
, vol.286
, pp. 13336-13345
-
-
Guo, L.1
Mishra, G.2
Taylor, K.3
Wang, X.4
|