-
1
-
-
7444220645
-
Electric field in atomically thin carbon films
-
DOI 10.1126/science.1102896
-
K. Novoselov, A. Geim, and S. Morozov, "Electric field effect in atomically thin carbon films," Science, vol. 306, no. 5696, pp. 666-669, 2004. (Pubitemid 39440910)
-
(2004)
Science
, vol.306
, Issue.5696
, pp. 666-669
-
-
Novoselov, K.S.1
Geim, A.K.2
Morozov, S.V.3
Jiang, D.4
Zhang, Y.5
Dubonos, S.V.6
Grigorieva, I.V.7
Firsov, A.A.8
-
2
-
-
40049093097
-
Chemically derived, ultrasmooth graphene nanoribbon semiconductors
-
DOI 10.1126/science.1150878
-
X. Li, X. Wang, L. Zhang, S. Lee, and H. Dai, "Chemically derived, ultrasmooth graphene nanoribbon semiconductors," Science, vol. 319, no. 5867, pp. 1229-1232, Feb. 2008. (Pubitemid 351323015)
-
(2008)
Science
, vol.319
, Issue.5867
, pp. 1229-1232
-
-
Li, X.1
Wang, X.2
Zhang, L.3
Lee, S.4
Dai, H.5
-
3
-
-
77954904482
-
Atomically precise bottom-up fabrication of graphene nanoribbons
-
J. Cai, P. Ruffieux, R. Jaafar, M. Bieri, T. Braun, S. Blankenburg, et al., "Atomically precise bottom-up fabrication of graphene nanoribbons," Nature, vol. 466, no. 7305, pp. 470-473, 2010.
-
(2010)
Nature
, vol.466
, Issue.7305
, pp. 470-473
-
-
Cai, J.1
Ruffieux, P.2
Jaafar, R.3
Bieri, M.4
Braun, T.5
Blankenburg, S.6
-
4
-
-
84859150664
-
Intra-ribbon heterojunction formation in ultranarrow graphene nanoribbons
-
S. Blankenburg, J. Cai, P. Ruffieux, R. Jaafar, D. Passerone, X. Feng, et al., "Intra-ribbon heterojunction formation in ultranarrow graphene nanoribbons," ACS Nano, vol. 6, no. 3, pp. 2020-2025, 2012.
-
(2012)
ACS Nano
, vol.6
, Issue.3
, pp. 2020-2025
-
-
Blankenburg, S.1
Cai, J.2
Ruffieux, P.3
Jaafar, R.4
Passerone, D.5
Feng, X.6
-
5
-
-
33645051728
-
Edge state on hydrogen-terminated graphite edges investigated by scanning tunneling microscopy
-
Y. Kobayashi, K.-I. Fukui, T. Enoki, and K. Kusakabe, "Edge state on hydrogen-terminated graphite edges investigated by scanning tunneling microscopy," Phys. Rev. B, vol. 73, no. 12, pp. 125415-1-125415-3, 2006.
-
(2006)
Phys. Rev. B
, vol.73
, Issue.12
, pp. 1254151-1254153
-
-
Kobayashi, Y.1
Fukui, K.-I.2
Enoki, T.3
Kusakabe, K.4
-
6
-
-
33344458266
-
Observation of zigzag and armchair edges of graphite using scanning tunneling microscopy and spectroscopy
-
Y. Kobayashi, K.-I. Fukui, T. Enoki, K. Kusakabe, and Y. Kaburagi, "Observation of zigzag and armchair edges of graphite using scanning tunneling microscopy and spectroscopy," Phys. Rev. B, vol. 71, no. 19, pp. 193406-1-193406-4, 2005.
-
(2005)
Phys. Rev. B
, vol.71
, Issue.19
, pp. 1934061-1934064
-
-
Kobayashi, Y.1
Fukui, K.-I.2
Enoki, T.3
Kusakabe, K.4
Kaburagi, Y.5
-
7
-
-
0000781318
-
Edge state in graphene ribbons: Nanometer size effect and edge shape dependence
-
K. Nakada, M. Fujita, G. Dresselhaus, and M. S. Dresselhaus, "Edge state in graphene ribbons: Nanometer size effect and edge shape dependence," Phys. Rev. Lett., vol. 54, no. 24, pp. 17954-17961, 1996.
-
(1996)
Phys. Rev. Lett.
, vol.54
, Issue.24
, pp. 17954-17961
-
-
Nakada, K.1
Fujita, M.2
Dresselhaus, G.3
Dresselhaus, M.S.4
-
8
-
-
0030492538
-
Peculiar localized state at zigzag graphite edge
-
M. Fujita, K. Wakabayashi, K. Nakada, and K. Kusakabe, "Peculiar localized state at zigzag graphite edge," J. Phys. Soc., vol. 65, no. 7, pp. 1920-1923, 1996.
-
(1996)
J. Phys. Soc.
, vol.65
, Issue.7
, pp. 1920-1923
-
-
Fujita, M.1
Wakabayashi, K.2
Nakada, K.3
Kusakabe, K.4
-
9
-
-
33751110207
-
Half-metallic graphene nanoribbons
-
DOI 10.1038/nature05180, PII NATURE05180
-
Y.-W. Son, M. L. Cohen, and S. G. Louie, "Half-metallic graphene nanoribbons," Nature, vol. 444, no. 7117, pp. 347-349, 2006. (Pubitemid 44764106)
-
(2006)
Nature
, vol.444
, Issue.7117
, pp. 347-349
-
-
Son, Y.-W.1
Cohen, M.L.2
Louie, S.G.3
-
10
-
-
77956422342
-
Very large magnetoresistance in graphene nanoribbons
-
J. Bai, R. Cheng, F. Xiu, L. Liao, M. Wang, A. Shailos, et al., "Very large magnetoresistance in graphene nanoribbons," Nature Nanotechnol., vol. 5, no. 9, pp. 655-659, 2010.
-
(2010)
Nature Nanotechnol.
, vol.5
, Issue.9
, pp. 655-659
-
-
Bai, J.1
Cheng, R.2
Xiu, F.3
Liao, L.4
Wang, M.5
Shailos, A.6
-
12
-
-
33751348065
-
Energy gaps in graphene nanoribbons
-
Nov.
-
Y.-W. Son, M. L. Cohen, and S. G. Louie, "Energy gaps in graphene nanoribbons," Phys. Rev. Lett., vol. 97, no. 21, pp. 216803-1-216803-4, Nov. 2006.
-
(2006)
Phys. Rev. Lett.
, vol.97
, Issue.21
, pp. 2168031-2168034
-
-
Son, Y.-W.1
Cohen, M.L.2
Louie, S.G.3
-
13
-
-
33846888290
-
Ballistic transport in graphene nanostrips in the presence of disorder: Importance of edge effects
-
DOI 10.1021/nl062132h
-
D. A. Areshkin, D. Gunlycke, and C. T. White, "Ballistic transport in graphene nanostrips in the presence of disorder: Importance of edge effects," Nano Lett., vol. 7, no. 1, pp. 204-210, 2007. (Pubitemid 46225854)
-
(2007)
Nano Letters
, vol.7
, Issue.1
, pp. 204-210
-
-
Areshkin, D.A.1
Gunlycke, D.2
White, C.T.3
-
14
-
-
34047268918
-
Semiconducting graphene nanostrips with edge disorder
-
D. Gunlycke, D. A. Areshkin, and C. T. White, "Semiconducting graphene nanostrips with edge disorder," Appl. Phys. Lett., vol. 90, no. 14, pp. 142104-1-142104-6, 2007.
-
(2007)
Appl. Phys. Lett.
, vol.90
, Issue.14
, pp. 1421041-1421046
-
-
Gunlycke, D.1
Areshkin, D.A.2
White, C.T.3
-
15
-
-
34548052241
-
Effect of edge roughness in graphene nanoribbon transistors
-
Y. Yoon and J. Guo, "Effect of edge roughness in graphene nanoribbon transistors," Appl. Phys. Lett., vol. 91, no. 7, pp. 073103-1-073103-3, 2007.
-
(2007)
Appl. Phys. Lett.
, vol.91
, Issue.7
, pp. 0731031-0731033
-
-
Yoon, Y.1
Guo, J.2
-
16
-
-
55849119530
-
Edge disorder induced Anderson localization and conduction gap in graphene nanorib-bons
-
M. Evaldsson, I. V. Zozoulenko, H. Xu, and T. Heinzel, "Edge disorder induced Anderson localization and conduction gap in graphene nanorib-bons," Phys. Rev. B, vol. 78, no. 1, pp. 161407-1-161407-4, 2008.
-
(2008)
Phys. Rev. B
, vol.78
, Issue.1
, pp. 1614071-1614074
-
-
Evaldsson, M.1
Zozoulenko, I.V.2
Xu, H.3
Heinzel, T.4
-
17
-
-
60949113491
-
Conductance quantization and transport gaps in disordered graphene nanoribbons
-
E. R. Mucciolo, A. H. Castro Neto, and C. H. Lewenkopf, "Conductance quantization and transport gaps in disordered graphene nanoribbons," Phys. Rev. B, vol. 79, no. 7, pp. 075407-1-075407-5, 2009.
-
(2009)
Phys. Rev. B
, vol.79
, Issue.7
, pp. 0754071-0754075
-
-
Mucciolo, E.R.1
Castro Neto, A.H.2
Lewenkopf, C.H.3
-
18
-
-
84870293610
-
Device performance of graphene nanoribbon field effect transistors in the presence of line-edge roughness
-
Dec.
-
A. Yazdanpanah, M. Pourfath, M. Fathipour, and H. Kosina, "Device performance of graphene nanoribbon field effect transistors in the presence of line-edge roughness," IEEE Trans. Electron Devices, vol. 59, no. 12, pp. 3527-3532, Dec. 2012.
-
(2012)
IEEE Trans. Electron Devices
, vol.59
, Issue.12
, pp. 3527-3532
-
-
Yazdanpanah, A.1
Pourfath, M.2
Fathipour, M.3
Kosina, H.4
-
19
-
-
43949130153
-
Vacancy-induced magnetism in graphene and graphene ribbons
-
J. J. Palacios, J. Fernández-Rossier, and L. Brey, "Vacancy-induced magnetism in graphene and graphene ribbons," Phys. Rev. B, vol. 77, no. 19, pp. 195428-1-195428-3, 2008.
-
(2008)
Phys. Rev. B
, vol.77
, Issue.19
, pp. 1954281-1954283
-
-
Palacios, J.J.1
Fernández-Rossier, J.2
Brey, L.3
-
20
-
-
84870292326
-
Influence of edge defects, vacancies, and potential fluctuations on transport properties of extremely scaled graphene nanoribbons
-
Dec.
-
M. Poljak, S. Member, E. B. Song, M. Wang, T. Suligoj, and K. L. Wang, "Influence of edge defects, vacancies, and potential fluctuations on transport properties of extremely scaled graphene nanoribbons," IEEE Trans. Electron Devices, vol. 59, no. 12, pp. 3231-3238, Dec. 2012.
-
(2012)
IEEE Trans. Electron Devices
, vol.59
, Issue.12
, pp. 3231-3238
-
-
Poljak, M.1
Member, S.2
Song, E.B.3
Wang, M.4
Suligoj, T.5
Wang, K.L.6
-
21
-
-
84856260973
-
A numerical study of line-edge roughness scattering in graphene nanoribbons
-
Feb.
-
A. Yazdanpanah, M. Pourfath, M. Fathipour, H. Kosina, and S. Selber-herr, "A numerical study of line-edge roughness scattering in graphene nanoribbons," IEEE Trans. Electron Devices, vol. 59, no. 2, pp. 433-440, Feb. 2012.
-
(2012)
IEEE Trans. Electron Devices
, vol.59
, Issue.2
, pp. 433-440
-
-
Yazdanpanah, A.1
Pourfath, M.2
Fathipour, M.3
Kosina, H.4
Selber-Herr, S.5
-
22
-
-
79952586642
-
Signatures of disorder in the minimum conductivity of graphene
-
Y. Sui, T. Low, M. Lundstrom, and J. Appenzeller, "Signatures of disorder in the minimum conductivity of graphene," Nano Lett., vol. 11, no. 3, pp. 1319-1322, 2011.
-
(2011)
Nano Lett.
, vol.11
, Issue.3
, pp. 1319-1322
-
-
Sui, Y.1
Low, T.2
Lundstrom, M.3
Appenzeller, J.4
-
23
-
-
77950857180
-
Emergence of magnetism in graphene materials and nanostructures
-
O. V. Yazyev, "Emergence of magnetism in graphene materials and nanostructures," Rep. Progr. Phys., vol. 73, no. 5, pp. 056501-1-056501-3, 2010.
-
(2010)
Rep. Progr. Phys.
, vol.73
, Issue.5
, pp. 0565011-0565013
-
-
Yazyev, O.V.1
-
24
-
-
70349240455
-
Spin polarized transport on zigzag graphene nanoribbon with a single defect
-
H. Kumazaki and D. S. Hirashima, "Spin polarized transport on zigzag graphene nanoribbon with a single defect," J. Phys. Soc. Jpn., vol. 78, no. 9, pp. 094701-1-094701-6, 2009.
-
(2009)
J. Phys. Soc. Jpn.
, vol.78
, Issue.9
, pp. 0947011-0947016
-
-
Kumazaki, H.1
Hirashima, D.S.2
-
25
-
-
77956329383
-
Generalized tight-binding transport model for graphene nanoribbon-based systems
-
Y. Hancock, A. Uppstu, K. Saloriutta, A. Harju, and M. J. Puska, "Generalized tight-binding transport model for graphene nanoribbon-based systems," Phys. Rev. B, vol. 81, no. 24, pp. 245402-1-245402-6, 2010.
-
(2010)
Phys. Rev. B
, vol.81
, Issue.24
, pp. 2454021-2454026
-
-
Hancock, Y.1
Uppstu, A.2
Saloriutta, K.3
Harju, A.4
Puska, M.J.5
-
26
-
-
77955077835
-
Magnetism of finite graphene samples: Mean-field theory compared with exact diagonalization and quantum Monte Carlo simulations
-
H. Feldner, Z. Y. Meng, A. Honecker, D. Cabra, S. Wessel, and F. F. Assaad, "Magnetism of finite graphene samples: Mean-field theory compared with exact diagonalization and quantum Monte Carlo simulations," Phys. Rev. B, vol. 81, no. 11, pp. 115416-1-115416-5, 2010.
-
(2010)
Phys. Rev. B
, vol.81
, Issue.11
, pp. 1154161-1154165
-
-
Feldner, H.1
Meng, Z.Y.2
Honecker, A.3
Cabra, D.4
Wessel, S.5
Assaad, F.F.6
-
27
-
-
41749107980
-
Multidimensional modelling of nanotransistors
-
Sep.
-
M. P. Anantram and A. Svizhenko, "Multidimensional modelling of nanotransistors," IEEE Trans. Electron Devices, vol. 54, no. 9, pp. 2100-2115, Sep. 2007.
-
(2007)
IEEE Trans. Electron Devices
, vol.54
, Issue.9
, pp. 2100-2115
-
-
Anantram, M.P.1
Svizhenko, A.2
-
29
-
-
84872863401
-
Experimentally controlling the edge termination of graphene nanorib-bons
-
X. Zhang, O. V. Yazyev, J. Feng, L. Xie, C. Tao, Y.-C. Chen, et al., "Experimentally controlling the edge termination of graphene nanorib-bons," ACS Nano, vol. 7, no. 1, pp. 198-202, 2013.
-
(2013)
ACS Nano
, vol.7
, Issue.1
, pp. 198-202
-
-
Zhang, X.1
Yazyev, O.V.2
Feng, J.3
Xie, L.4
Tao, C.5
Chen, Y.-C.6
-
30
-
-
0001124898
-
Highly convergent schemes for the calculation of bulk and surface green functions
-
M. P. L. Sancho, J. M. L. Rubio, and L. Rubio, "Highly convergent schemes for the calculation of bulk and surface green functions," J. Phys. F, Metal Phys., vol. 15, no. 4, pp. 851-858, 1985.
-
(1985)
J. Phys. F, Metal Phys.
, vol.15
, Issue.4
, pp. 851-858
-
-
Sancho, M.P.L.1
Rubio, J.M.L.2
Rubio, L.3
-
31
-
-
77649188721
-
Impact of size effect on graphene nanoribbon transport
-
Mar.
-
R. Murali, "Impact of size effect on graphene nanoribbon transport," IEEE Electron Device Lett., vol. 31, no. 3, pp. 237-239, Mar. 2010.
-
(2010)
IEEE Electron Device Lett.
, vol.31
, Issue.3
, pp. 237-239
-
-
Murali, R.1
-
32
-
-
56349108496
-
Mobility in semiconducting graphene nanoribbons: Phonon, impurity, and edge roughness scattering
-
T. Fang, A. Konar, H. Xingi, and D. Jena, "Mobility in semiconducting graphene nanoribbons: Phonon, impurity, and edge roughness scattering," Phys. Rev. B, vol. 78, no. 20, pp. 205403-1-205403-8, 2008.
-
(2008)
Phys. Rev. B
, vol.78
, Issue.20
, pp. 2054031-2054038
-
-
Fang, T.1
Konar, A.2
Xingi, H.3
Jena, D.4
-
33
-
-
40849098550
-
Numerical studies of conductivity and Fano factor in disordered graphene
-
C. Lewenkopf, E. Mucciolo, and A. Castro Neto, "Numerical studies of conductivity and Fano factor in disordered graphene," Phys. Rev. B, vol. 77, no. 8, pp. 081410-1-081410-1, 2008.
-
(2008)
Phys. Rev. B
, vol.77
, Issue.8
, pp. 0814101-0814101
-
-
Lewenkopf, C.1
Mucciolo, E.2
Castro Neto, A.3
-
34
-
-
38849201768
-
Observation of electron-hole puddles in graphene using a scanning single-electron transistor
-
J. Martin, N. Akerman, G. Ulbricht, T. Lohmann, J. H. Smet, K. von Klitzing, et al., "Observation of electron-hole puddles in graphene using a scanning single-electron transistor," Nature Phys., vol. 4, no. 2, pp. 144-148, 2008.
-
(2008)
Nature Phys.
, vol.4
, Issue.2
, pp. 144-148
-
-
Martin, J.1
Akerman, N.2
Ulbricht, G.3
Lohmann, T.4
Smet, J.H.5
Von Klitzing, K.6
-
35
-
-
60749130866
-
Energy gaps in etched graphene nanoribbons
-
C. Stampfer, J. Güttinger, S. Hellmüller, F. Molitor, K. Ensslin, and T. Ihn, "Energy gaps in etched graphene nanoribbons," Phys. Rev. Lett., vol. 102, no. 5, pp. 056403-1-056403-4, 2009.
-
(2009)
Phys. Rev. Lett.
, vol.102
, Issue.5
, pp. 0564031-0564034
-
-
Stampfer, C.1
Güttinger, J.2
Hellmüller, S.3
Molitor, F.4
Ensslin, K.5
Ihn, T.6
-
36
-
-
38849130184
-
Suppression of the orientation effects on bandgap in graphene nanoribbons in the presence of edge disorder
-
D. Querlioz, Y. Apertet, A. Valentin, K. Huet, A. Bournel, S. Galdin-Retailleau, et al., "Suppression of the orientation effects on bandgap in graphene nanoribbons in the presence of edge disorder," Appl. Phys. Lett., vol. 92, no. 4, pp. 042108-1-042108-3, 2008.
-
(2008)
Appl. Phys. Lett.
, vol.92
, Issue.4
, pp. 0421081-0421083
-
-
Querlioz, D.1
Apertet, Y.2
Valentin, A.3
Huet, K.4
Bournel, A.5
Galdin-Retailleau, S.6
|