메뉴 건너뛰기




Volumn 94, Issue 1, 2014, Pages 105-125

Modelling relational statistics with Bayes Nets

Author keywords

Bayes Nets; M bius transform; Pseudo likelihood; Statistical relational learning; Structured data

Indexed keywords

ANSWERING QUERIES; BAYES NET; BENCHMARK DATASETS; OBJECTIVE FUNCTIONS; PSEUDO-LIKELIHOOD; QUERY OPTIMIZATION; STATISTICAL-RELATIONAL LEARNING; STRUCTURED DATA;

EID: 84891373271     PISSN: 08856125     EISSN: 15730565     Source Type: Journal    
DOI: 10.1007/s10994-013-5362-7     Document Type: Article
Times cited : (27)

References (37)
  • 1
    • 38149069576 scopus 로고    scopus 로고
    • Quantifying the uncertainty of a belief net response: Bayesian error-bars for belief net inference
    • 10.1016/j.artint.2007.09.004 1182.68304 2388565
    • Allen, T. V., Singh, A., Greiner, R., & Hooper, P. (2008). Quantifying the uncertainty of a belief net response: Bayesian error-bars for belief net inference. Artificial Intelligence, 172(4-5), 483-513.
    • (2008) Artificial Intelligence , vol.172 , Issue.4-5 , pp. 483-513
    • Allen, T.V.1    Singh, A.2    Greiner, R.3    Hooper, P.4
  • 6
    • 84858444489 scopus 로고    scopus 로고
    • Reference classes and relational learning
    • 10.1016/j.ijar.2011.05.002 1242.68323 2902399
    • Chiang, M., & Poole, D. (2012). Reference classes and relational learning. International Journal of Approximate Reasoning, 53(3), 326-346.
    • (2012) International Journal of Approximate Reasoning , vol.53 , Issue.3 , pp. 326-346
    • Chiang, M.1    Poole, D.2
  • 11
    • 0040586129 scopus 로고
    • Estimation of graph totals
    • 0358.62008 458659
    • Frank, O. (1977). Estimation of graph totals. Scandinavian Journal of Statistics, 4(2), 81-89.
    • (1977) Scandinavian Journal of Statistics , vol.4 , Issue.2 , pp. 81-89
    • Frank, O.1
  • 15
    • 0039561484 scopus 로고    scopus 로고
    • Selectivity estimation using probabilistic models
    • 10.1145/376284.375727
    • Getoor, L., Taskar, B., & Koller, D. (2001). Selectivity estimation using probabilistic models. ACM SIGMOD Record, 30(2), 461-472.
    • (2001) ACM SIGMOD Record , vol.30 , Issue.2 , pp. 461-472
    • Getoor, L.1    Taskar, B.2    Koller, D.3
  • 17
    • 0025535649 scopus 로고
    • An analysis of first-order logics of probability
    • 10.1016/0004-3702(90)90019-V 0723.03007 1084887
    • Halpern, J. Y. (1990). An analysis of first-order logics of probability. Artificial Intelligence, 46(3), 311-350.
    • (1990) Artificial Intelligence , vol.46 , Issue.3 , pp. 311-350
    • Halpern, J.Y.1
  • 18
    • 34247146505 scopus 로고    scopus 로고
    • Multiplicative latent factor models for description and prediction of social networks
    • Hoff, P. D. (2007). Multiplicative latent factor models for description and prediction of social networks. In Computational and mathematical organization theory.
    • (2007) Computational and Mathematical Organization Theory
    • Hoff, P.D.1
  • 19
    • 0000252076 scopus 로고
    • Computational aspects of the Möbius transformation
    • Kennes, R., & Smets, P. (1990). Computational aspects of the Möbius transformation. In UAI (pp. 401-416).
    • (1990) UAI , pp. 401-416
    • Kennes, R.1    Smets, P.2
  • 20
    • 77958615695 scopus 로고    scopus 로고
    • Structure learning for Markov logic networks with many descriptive attributes
    • Khosravi, H., Schulte, O., Man, T., Xu, X., & Bina, B. (2010). Structure learning for Markov logic networks with many descriptive attributes. In AAAI (pp. 487-493).
    • (2010) AAAI , pp. 487-493
    • Khosravi, H.1    Schulte, O.2    Man, T.3    Xu, X.4    Bina, B.5
  • 22
    • 84857184874 scopus 로고    scopus 로고
    • Learning Markov logic networks via functional gradient boosting
    • IEEE Comput. Soc. Los Alamitos
    • Khot, T., Natarajan, S., Kersting, K., & Shavlik, J. W. (2011). Learning Markov logic networks via functional gradient boosting. In ICDM (pp. 320-329). Los Alamitos: IEEE Comput. Soc.
    • (2011) ICDM , pp. 320-329
    • Khot, T.1    Natarajan, S.2    Kersting, K.3    Shavlik, J.W.4
  • 23
    • 77956519107 scopus 로고    scopus 로고
    • Learning Markov logic networks using structural motifs
    • Kok, S., & Domingos, P. (2010). Learning Markov logic networks using structural motifs. In ICML (pp. 551-558).
    • (2010) ICML , pp. 551-558
    • Kok, S.1    Domingos, P.2
  • 26
    • 84891372744 scopus 로고    scopus 로고
    • Learning causal models of relational domains
    • Maier, M., Taylor, B., Oktay, H., & Jensen, D. (2010). Learning causal models of relational domains. In AAAI.
    • (2010) AAAI
    • Maier, M.1    Taylor, B.2    Oktay, H.3    Jensen, D.4
  • 29
    • 84880831450 scopus 로고    scopus 로고
    • First-order probabilistic inference
    • Poole, D. (2003). First-order probabilistic inference. In IJCAI (pp. 985-991).
    • (2003) IJCAI , pp. 985-991
    • Poole, D.1
  • 31
    • 84865207049 scopus 로고    scopus 로고
    • A tractable pseudo-likelihood function for Bayes nets applied to relational data
    • Schulte, O. (2011). A tractable pseudo-likelihood function for Bayes nets applied to relational data. In SIAM SDM (pp. 462-473).
    • (2011) SIAM SDM , pp. 462-473
    • Schulte, O.1
  • 33
    • 84865227776 scopus 로고    scopus 로고
    • Learning graphical models for relational data via lattice search
    • 10.1007/s10994-012-5289-4 2949889
    • Schulte, O., & Khosravi, H. (2012). Learning graphical models for relational data via lattice search. Machine Learning, 88(3), 331-368.
    • (2012) Machine Learning , vol.88 , Issue.3 , pp. 331-368
    • Schulte, O.1    Khosravi, H.2
  • 37
    • 2442458705 scopus 로고    scopus 로고
    • Crossmine: Efficient classification across multiple database relations
    • IEEE Comput. Soc. Los Alamitos
    • Yin, X., Han, J., Yang, J., & Yu, P. S. (2004). Crossmine: efficient classification across multiple database relations. In ICDE (pp. 399-410). Los Alamitos: IEEE Comput. Soc.
    • (2004) ICDE , pp. 399-410
    • Yin, X.1    Han, J.2    Yang, J.3    Yu, P.S.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.