메뉴 건너뛰기




Volumn 172, Issue 4-5, 2008, Pages 483-513

Quantifying the uncertainty of a belief net response: Bayesian error-bars for belief net inference

Author keywords

Bayesian belief network; Bucket elimination; Credible interval; Error bars; Variance

Indexed keywords

ALGORITHMS; GAUSSIAN DISTRIBUTION; LEARNING SYSTEMS; PARAMETER ESTIMATION; QUERY PROCESSING; UNCERTAINTY ANALYSIS;

EID: 38149069576     PISSN: 00043702     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.artint.2007.09.004     Document Type: Article
Times cited : (31)

References (43)
  • 3
    • 38149108880 scopus 로고    scopus 로고
    • A note on uniform asymptotic normality of Dirichlet distribution
    • Akimoto Y. A note on uniform asymptotic normality of Dirichlet distribution. Math. Japon. 44 1 (December 1996) 25-30
    • (1996) Math. Japon. , vol.44 , Issue.1 , pp. 25-30
    • Akimoto, Y.1
  • 5
    • 38149126180 scopus 로고    scopus 로고
    • C. Boutilier, N. Friedman, M. Goldszmidt, D. Koller, Context-specific independence in Bayesian networks, in: Twelfth Annual Conference on Uncertainty in Artificial Intelligence (UAI-96), 1996
  • 6
    • 0031273462 scopus 로고    scopus 로고
    • Adaptive probabilistic networks with hidden variables
    • Binder J., Koller D., Russell S.J., and Kanazawa K. Adaptive probabilistic networks with hidden variables. Machine Learning 29 2-3 (1997) 213-244
    • (1997) Machine Learning , vol.29 , Issue.2-3 , pp. 213-244
    • Binder, J.1    Koller, D.2    Russell, S.J.3    Kanazawa, K.4
  • 9
    • 34249832377 scopus 로고
    • A Bayesian method for the induction of probabilistic networks from data
    • Cooper G., and Herskovits E. A Bayesian method for the induction of probabilistic networks from data. Machine Learning 9 (1992) 309-347
    • (1992) Machine Learning , vol.9 , pp. 309-347
    • Cooper, G.1    Herskovits, E.2
  • 11
    • 0001326681 scopus 로고
    • The Kolmogorov-Smirnov, Cramer-von Mises tests
    • Darling D.A. The Kolmogorov-Smirnov, Cramer-von Mises tests. Ann. Math. Stat. 28 (1957) 823-838
    • (1957) Ann. Math. Stat. , vol.28 , pp. 823-838
    • Darling, D.A.1
  • 12
    • 38149085881 scopus 로고    scopus 로고
    • A. Darwiche, A differential approach to inference in Bayesian networks, in: 16th Annual Conference on Uncertainty in Artificial Intelligence (UAI-93), 2000
  • 13
    • 38149088001 scopus 로고    scopus 로고
    • March 1995, Special issue of "Communications of the ACM", on Bayesian Networks
  • 14
    • 38149035751 scopus 로고    scopus 로고
    • R. Dechter, Bucket elimination: A unifying framework for probabilistic inference, in: Learning and Inference in Graphical Models, 1998
  • 15
    • 38149129195 scopus 로고    scopus 로고
    • A. Darwiche, G.M. Provan, Query DAGs: A practical paradigm for implementing belief network inference, in: Twelfth Conference on Uncertainty in Artificial Intelligence (UAI'96), 1996
  • 17
    • 38149000043 scopus 로고    scopus 로고
    • R. Greiner, C. Darken, I. Santoso, Efficient reasoning, Computing Surveys, 2001
  • 18
    • 29344448279 scopus 로고    scopus 로고
    • Y. Guo, R. Greiner, Discriminative model selection for belief net structures, in: Twentieth National Conference on Artificial Intelligence (AAAI-05), Pittsburgh, July 2005, pp. 770-776
  • 19
    • 38149083206 scopus 로고    scopus 로고
    • R. Greiner, A. Grove, D. Schuurmans, Learning Bayesian nets that perform well, in: 13th Annual Conference on Uncertainty in Artificial Intelligence (UAI-97), 1997
  • 20
    • 38149139203 scopus 로고    scopus 로고
    • http://www.cs.ualberta.ca/~greiner/RESEARCH/BNvar
  • 21
    • 38149042528 scopus 로고    scopus 로고
    • E.H. Herskovits, C.F. Cooper, Algorithms for Bayesian belief-network precomputation, in: Methods of Information in Medicine, 1991, pp. 362-370
  • 22
    • 38149126945 scopus 로고    scopus 로고
    • D.E. Heckerman, A tutorial on learning with Bayesian networks, in: M.I. Jordan (Ed.), Learning in Graphical Models, 1998
  • 23
    • 34249761849 scopus 로고
    • Learning Bayesian networks: The combination of knowledge and statistical data
    • Heckerman D., Geiger D., and Chickering D.M. Learning Bayesian networks: The combination of knowledge and statistical data. Machine Learning 20 (1995)
    • (1995) Machine Learning , vol.20
    • Heckerman, D.1    Geiger, D.2    Chickering, D.M.3
  • 26
    • 0030416789 scopus 로고    scopus 로고
    • Propagating imprecise probabilities in Bayesian networks
    • Kleiter G. Propagating imprecise probabilities in Bayesian networks. Artificial Intelligence 88 (1996)
    • (1996) Artificial Intelligence , vol.88
    • Kleiter, G.1
  • 29
    • 38149072205 scopus 로고    scopus 로고
    • U. Kjaerulff, L.C. Van der Gaag, Making sensitivity analysis computationally efficient, in: 16th Conference on Uncertainty in Artificial Intelligence (UAI-00), 2000
  • 30
    • 0029322870 scopus 로고
    • Sensitivity analysis for probability assessments in Bayesian networks
    • Laskey K.B. Sensitivity analysis for probability assessments in Bayesian networks. IEEE Trans. Man Cybernet. Syst. 25 6 (1995) 901-909
    • (1995) IEEE Trans. Man Cybernet. Syst. , vol.25 , Issue.6 , pp. 901-909
    • Laskey, K.B.1
  • 31
    • 38149116043 scopus 로고    scopus 로고
    • Y. Lin, M.J. Druzdzel, Computational advantages of relevance reasoning in Bayesian beliefs networks, in: Uncertainty in Artificial Intelligence (UAI-97), 1997, pp. 342-350
  • 32
    • 38149008713 scopus 로고    scopus 로고
    • C. Lee, R. Greiner, S. Wang, Using variance estimates to combine Bayesian classifiers, in: International Conference on Machine Learning (ICML'06), Pittsburgh, June 2006
  • 33
    • 38149001397 scopus 로고    scopus 로고
    • A.W. Moore, Private communication, May 2003
  • 35
    • 0038136330 scopus 로고
    • Hierarchical variable selection in polynomial regression models
    • Peixoto J.L. Hierarchical variable selection in polynomial regression models. American Statistician 41 (1987)
    • (1987) American Statistician , vol.41
    • Peixoto, J.L.1
  • 38
    • 38149026882 scopus 로고    scopus 로고
    • A.P. Singh, What to do when you don't have much data: Issues in small sample parameter learning in Bayesian networks, Master's thesis, University of Alberta, 2004
  • 39
    • 84986980101 scopus 로고
    • Sequential updating of conditional probabilities on directed graphical structures
    • Spiegelhalter D.J., and Lauritzen S.L. Sequential updating of conditional probabilities on directed graphical structures. Networks (1990) 579-605
    • (1990) Networks , pp. 579-605
    • Spiegelhalter, D.J.1    Lauritzen, S.L.2
  • 40
    • 38149113366 scopus 로고    scopus 로고
    • T. Van Allen, R. Greiner, P. Hooper, Bayesian error-bars for belief net inference, in: 17th Conference on Uncertainty in Artificial Intelligence (UAI-01), Aug 2001
  • 41
    • 38149048106 scopus 로고    scopus 로고
    • T. Van Allen, Handling uncertainty when you're handling uncertainty: Model selection and error bars for belief networks, Master's thesis, Department of Computing Science, University of Alberta, 2000
  • 42
    • 38149079577 scopus 로고    scopus 로고
    • G.I. Webb, P. Conilione, Estimating bias and variance from data, Technical report, 2005


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.