-
2
-
-
0036042175
-
Models and issues in data stream systems
-
ACM Press, June
-
B. Babcock, S. Babu, M. Datar et al., Models and issues in data stream systems, in Proceedings of the ACM Symposium on Principles of Database Systems, ACM Press, June 2002.
-
(2002)
Proceedings of the ACM Symposium on Principles of Database Systems
-
-
Babcock, B.1
Babu, S.2
Datar, M.3
-
4
-
-
0028424239
-
Improving generalization with active learning
-
D. Cohn, L. Atlas et al., Improving generalization with active learning, Machine Learning 15(2) (1994).
-
(1994)
Machine Learning
, vol.15
, Issue.2
-
-
Cohn, D.1
Atlas, L.2
-
7
-
-
85123650840
-
Detecting change in data streams
-
Toronto, Canada
-
B. David, G. Johannes et al., Detecting change in data streams, in Proceedings of International Conference on Very Large Data Bases, Toronto, Canada, 2004, 180-191.
-
(2004)
Proceedings of International Conference on Very Large Data Bases
, pp. 180-191
-
-
David, B.1
Johannes, G.2
-
8
-
-
2942536418
-
Active mining of data streams
-
Lake Buena Vista, Florida, USA
-
W. Fan, Y. Huang et al., Active mining of data streams, in Proceedings of Fourth SIAM International Conference on Data Mining, Lake Buena Vista, Florida, USA, 2004, 457-461.
-
(2004)
Proceedings of Fourth SIAM International Conference on Data Mining
, pp. 457-461
-
-
Fan, W.1
Huang, Y.2
-
9
-
-
19544387592
-
Decision tree evolution using limited number of labeled data Items from drifting data streams
-
Brighton, UK
-
W. Fan, Y. Huang et al.. Decision tree evolution using limited number of labeled data Items from drifting data streams, in Proceedings of the 4th IEEE International Conference on Data Mining, Brighton, UK, 2004, 379-382.
-
(2004)
Proceedings of the 4th IEEE International Conference on Data Mining
, pp. 379-382
-
-
Fan, W.1
Huang, Y.2
-
10
-
-
85136029579
-
StreamMiner: A classifier ensemble-based engine to mine concept-drifting data streams
-
Toronto, Canada
-
W. Fan, StreamMiner: A classifier ensemble-based engine to mine concept-drifting data streams, in Proceedings of the 30th VLDB Conference, Toronto, Canada, 2004.
-
(2004)
Proceedings of the 30th VLDB Conference
-
-
Fan, W.1
-
13
-
-
4544289585
-
Mining data streams under block evolution
-
V. Ganti, J. Gehrke et al., Mining data streams under block evolution, SIGKDD Explorations 3(2) (2002).
-
(2002)
SIGKDD Explorations
, vol.3
, Issue.2
-
-
Ganti, V.1
Gehrke, J.2
-
14
-
-
0002896413
-
Tracking drifting concepts by minimizing disagreement
-
D. Helmbold and P. Long, Tracking drifting concepts by minimizing disagreement, Machine Learning 14(1) (1994), 27-45.
-
(1994)
Machine Learning
, vol.14
, Issue.1
, pp. 27-45
-
-
Helmbold, D.1
Long, P.2
-
16
-
-
0035789299
-
Mining time-changing data streams
-
San Francisco, CA, ACM Press
-
G. Hulten, L. Spencer and P. Domingos, Mining time-changing data streams, in Int'l Conf. on Knowledge Discovery and Data Mining, San Francisco, CA, ACM Press, 2001.
-
(2001)
Int'l Conf. on Knowledge Discovery and Data Mining
-
-
Hulten, G.1
Spencer, L.2
Domingos, P.3
-
18
-
-
78149292125
-
Dynamic weighted majority: A new ensemble method for tracking concept drift
-
IEEE CS Press
-
J. Kolter and M. Maloof, Dynamic weighted majority: a new ensemble method for tracking concept drift. The 3rd IEEE Int. Conf. on Data Mining ICDM, IEEE CS Press, 2003, 123-130.
-
(2003)
The 3rd IEEE Int. Conf. on Data Mining ICDM
, pp. 123-130
-
-
Kolter, J.1
Maloof, M.2
-
19
-
-
41649118579
-
Boosting Classifiers for Drifting Concepts
-
Accepted for publication
-
M. Kubat, J. Gama and P.E. Utgo, Boosting Classifiers for Drifting Concepts, Intelligent Data Analysis (2006), Accepted for publication.
-
(2006)
Intelligent Data Analysis
-
-
Kubat, M.1
Gama, J.2
Utgo, P.E.3
-
20
-
-
37449029679
-
Online Classification of Nonstationary Data Streams
-
M. Last, Online Classification of Nonstationary Data Streams, Intelligent Data Analysis 6(2) (2002), 129-147.
-
(2002)
Intelligent Data Analysis
, vol.6
, Issue.2
, pp. 129-147
-
-
Last, M.1
-
23
-
-
33646420793
-
Using Multiple Windows to Track Concept Drift
-
M. Mihai et al., Using Multiple Windows to Track Concept Drift, Intelligent Data Analysis 8(1) (2004), 29-59.
-
(2004)
Intelligent Data Analysis
, vol.8
, Issue.1
, pp. 29-59
-
-
Mihai, M.1
-
29
-
-
77952415079
-
-
H. Wang, W. Fan et al, Mining Concept-Drifting data streams using ensemble classifiers, in the 9th ACM International Conference on Knowledge Discovery and Data Mining (SIGKDD), 2003.
-
H. Wang, W. Fan et al, Mining Concept-Drifting data streams using ensemble classifiers, in the 9th ACM International Conference on Knowledge Discovery and Data Mining (SIGKDD), 2003.
-
-
-
-
30
-
-
85019720843
-
Effective learning in dynamic environments by explicit context tracking
-
Proceedings of 6th European Conf. on Machine Learning ECML, Springer-Verlag
-
G. Widmer and M. Kubat, Effective learning in dynamic environments by explicit context tracking, in Proceedings of 6th European Conf. on Machine Learning ECML, Springer-Verlag, Lecture Notes in Computer Science 667, 1993, 227-243.
-
(1993)
Lecture Notes in Computer Science
, vol.667
, pp. 227-243
-
-
Widmer, G.1
Kubat, M.2
|