메뉴 건너뛰기




Volumn 11, Issue 4, 2007, Pages 401-419

An active learning system for mining time-changing data streams

Author keywords

Active learning; Concept drift; Increasing iterative step size; Ming time changing data streams; Significant changes; Uncertainty sampling

Indexed keywords


EID: 41649099657     PISSN: 1088467X     EISSN: 15714128     Source Type: Journal    
DOI: 10.3233/ida-2007-11406     Document Type: Article
Times cited : (26)

References (30)
  • 4
    • 0028424239 scopus 로고
    • Improving generalization with active learning
    • D. Cohn, L. Atlas et al., Improving generalization with active learning, Machine Learning 15(2) (1994).
    • (1994) Machine Learning , vol.15 , Issue.2
    • Cohn, D.1    Atlas, L.2
  • 9
    • 19544387592 scopus 로고    scopus 로고
    • Decision tree evolution using limited number of labeled data Items from drifting data streams
    • Brighton, UK
    • W. Fan, Y. Huang et al.. Decision tree evolution using limited number of labeled data Items from drifting data streams, in Proceedings of the 4th IEEE International Conference on Data Mining, Brighton, UK, 2004, 379-382.
    • (2004) Proceedings of the 4th IEEE International Conference on Data Mining , pp. 379-382
    • Fan, W.1    Huang, Y.2
  • 10
    • 85136029579 scopus 로고    scopus 로고
    • StreamMiner: A classifier ensemble-based engine to mine concept-drifting data streams
    • Toronto, Canada
    • W. Fan, StreamMiner: A classifier ensemble-based engine to mine concept-drifting data streams, in Proceedings of the 30th VLDB Conference, Toronto, Canada, 2004.
    • (2004) Proceedings of the 30th VLDB Conference
    • Fan, W.1
  • 13
    • 4544289585 scopus 로고    scopus 로고
    • Mining data streams under block evolution
    • V. Ganti, J. Gehrke et al., Mining data streams under block evolution, SIGKDD Explorations 3(2) (2002).
    • (2002) SIGKDD Explorations , vol.3 , Issue.2
    • Ganti, V.1    Gehrke, J.2
  • 14
    • 0002896413 scopus 로고
    • Tracking drifting concepts by minimizing disagreement
    • D. Helmbold and P. Long, Tracking drifting concepts by minimizing disagreement, Machine Learning 14(1) (1994), 27-45.
    • (1994) Machine Learning , vol.14 , Issue.1 , pp. 27-45
    • Helmbold, D.1    Long, P.2
  • 18
    • 78149292125 scopus 로고    scopus 로고
    • Dynamic weighted majority: A new ensemble method for tracking concept drift
    • IEEE CS Press
    • J. Kolter and M. Maloof, Dynamic weighted majority: a new ensemble method for tracking concept drift. The 3rd IEEE Int. Conf. on Data Mining ICDM, IEEE CS Press, 2003, 123-130.
    • (2003) The 3rd IEEE Int. Conf. on Data Mining ICDM , pp. 123-130
    • Kolter, J.1    Maloof, M.2
  • 19
    • 41649118579 scopus 로고    scopus 로고
    • Boosting Classifiers for Drifting Concepts
    • Accepted for publication
    • M. Kubat, J. Gama and P.E. Utgo, Boosting Classifiers for Drifting Concepts, Intelligent Data Analysis (2006), Accepted for publication.
    • (2006) Intelligent Data Analysis
    • Kubat, M.1    Gama, J.2    Utgo, P.E.3
  • 20
    • 37449029679 scopus 로고    scopus 로고
    • Online Classification of Nonstationary Data Streams
    • M. Last, Online Classification of Nonstationary Data Streams, Intelligent Data Analysis 6(2) (2002), 129-147.
    • (2002) Intelligent Data Analysis , vol.6 , Issue.2 , pp. 129-147
    • Last, M.1
  • 23
    • 33646420793 scopus 로고    scopus 로고
    • Using Multiple Windows to Track Concept Drift
    • M. Mihai et al., Using Multiple Windows to Track Concept Drift, Intelligent Data Analysis 8(1) (2004), 29-59.
    • (2004) Intelligent Data Analysis , vol.8 , Issue.1 , pp. 29-59
    • Mihai, M.1
  • 29
    • 77952415079 scopus 로고    scopus 로고
    • H. Wang, W. Fan et al, Mining Concept-Drifting data streams using ensemble classifiers, in the 9th ACM International Conference on Knowledge Discovery and Data Mining (SIGKDD), 2003.
    • H. Wang, W. Fan et al, Mining Concept-Drifting data streams using ensemble classifiers, in the 9th ACM International Conference on Knowledge Discovery and Data Mining (SIGKDD), 2003.
  • 30
    • 85019720843 scopus 로고
    • Effective learning in dynamic environments by explicit context tracking
    • Proceedings of 6th European Conf. on Machine Learning ECML, Springer-Verlag
    • G. Widmer and M. Kubat, Effective learning in dynamic environments by explicit context tracking, in Proceedings of 6th European Conf. on Machine Learning ECML, Springer-Verlag, Lecture Notes in Computer Science 667, 1993, 227-243.
    • (1993) Lecture Notes in Computer Science , vol.667 , pp. 227-243
    • Widmer, G.1    Kubat, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.