-
12
-
-
84877274509
-
-
A. G. Jarvis P. E. Sehnal S. E. Bajwa A. C. Whitwood X. Zhang M. S. Cheung Z. Lin I. J. S. Fairlamb Chem.-Eur. J. 2013 19 6034
-
(2013)
Chem.-Eur. J.
, vol.19
, pp. 6034
-
-
Jarvis, A.G.1
Sehnal, P.E.2
Bajwa, S.E.3
Whitwood, A.C.4
Zhang, X.5
Cheung, M.S.6
Lin, Z.7
Fairlamb, I.J.S.8
-
17
-
-
79953698506
-
-
J. D. Blakemore M. J. Chalkley J. H. Farnaby L. M. Guard N. Hazari C. D. Incarvito E. D. Luzik H. W. Suh Organometallics 2011 30 1818
-
(2011)
Organometallics
, vol.30
, pp. 1818
-
-
Blakemore, J.D.1
Chalkley, M.J.2
Farnaby, J.H.3
Guard, L.M.4
Hazari, N.5
Incarvito, C.D.6
Luzik, E.D.7
Suh, H.W.8
-
21
-
-
77955965823
-
-
The only related examples appear to be complexes containing P,S,X-terdentate ligands, in which the trans-position of the phosphorus and sulphur atoms results from the particular ligand geometry. For representative examples, see
-
A. Hildebrandt N. Wetzold P. Ecorchard B. Walfort T. Rüffer H. Lang Eur. J. Inorg. Chem. 2010 3615
-
(2010)
Eur. J. Inorg. Chem.
, pp. 3615
-
-
Hildebrandt, A.1
Wetzold, N.2
Ecorchard, P.3
Walfort, B.4
Rüffer, T.5
Lang, H.6
-
29
-
-
29844450248
-
-
Ferrocene-based phosphine-thioether donors reported to date include phosphinoferrocenes modified with various SR and CH2SR substituents (R = an organyl group) in positions 1′ or 2 of the ferrocene moiety. For representative examples, see
-
P. Štěpnička Eur. J. Inorg. Chem. 2005 3787
-
(2005)
Eur. J. Inorg. Chem.
, pp. 3787
-
-
Štěpnička, P.1
-
32
-
-
0036025595
-
-
V. C. Gibson N. J. Long A. J. P. White C. K. Williams D. J. Williams M. Fontani P. Zanello J. Chem. Soc., Dalton Trans. 2002 3280
-
(2002)
J. Chem. Soc., Dalton Trans.
, pp. 3280
-
-
Gibson, V.C.1
Long, N.J.2
White, A.J.P.3
Williams, C.K.4
Williams, D.J.5
Fontani, M.6
Zanello, P.7
-
35
-
-
84870905130
-
-
E. M. Kozinets O. Koniev O. A. Filippov J.-C. Daran R. Poli E. S. Shubina N. V. Belkova E. Manoury Dalton Trans. 2012 41 11849
-
(2012)
Dalton Trans.
, vol.41
, pp. 11849
-
-
Kozinets, E.M.1
Koniev, O.2
Filippov, O.A.3
Daran, J.-C.4
Poli, R.5
Shubina, E.S.6
Belkova, N.V.7
Manoury, E.8
-
45
-
-
0002298089
-
-
in, ed. G. Wilkinson, R. D. Gillard and J. A. McCleverty, Pergamon Press, Oxford, ch. 5
-
L. Sacconi, F. Mani and A. Bencini, in Comprehesive Coordination Chemistry, ed., G. Wilkinson, R. D. Gillard, and, J. A. McCleverty, Pergamon Press, Oxford, 1987, vol. 5, ch. 5, p. 1
-
(1987)
Comprehesive Coordination Chemistry
, vol.5
, pp. 1
-
-
Sacconi, L.1
Mani, F.2
Bencini, A.3
-
46
-
-
0002718243
-
-
in, ed. G. Wilkinson, R. D. Gillard and J. A. McCleverty, Pergamon Press, Oxford, ch. 51
-
C. F. J. Barnard and M. J. H. Russell, in Comprehesive Coordination Chemistry, ed., G. Wilkinson, R. D. Gillard, and, J. A. McCleverty, Pergamon Press, Oxford, 1987, vol. 5, ch. 51, p. 1099
-
(1987)
Comprehesive Coordination Chemistry
, vol.5
, pp. 1099
-
-
Barnard, C.F.J.1
Russell, M.J.H.2
-
47
-
-
0013103876
-
-
in, ed. G. Wilkinson, R. D. Gillard and J. A. McCleverty, Pergamon Press, Oxford, ch. 51.9
-
A. T. H. Hutton and C. P. Morley, in Comprehesive Coordination Chemistry, ed., G. Wilkinson, R. D. Gillard, and, J. A. McCleverty, Pergamon Press, Oxford, 1987, vol. 5, ch. 51.9, p. 1157
-
(1987)
Comprehesive Coordination Chemistry
, vol.5
, pp. 1157
-
-
Hutton, A.T.H.1
Morley, C.P.2
-
48
-
-
0000319223
-
-
in, ed. G. Wilkinson, R. D. Gillard and J. A. McCleverty, Pergamon Press, Oxford, ch. 52
-
D. M. Roundhill, in Comprehesive Coordination Chemistry, ed., G. Wilkinson, R. D. Gillard, and, J. A. McCleverty, Pergamon Press, Oxford, 1987, vol. 5, ch. 52, p. 351
-
(1987)
Comprehesive Coordination Chemistry
, vol.5
, pp. 351
-
-
Roundhill, D.M.1
-
49
-
-
0003203028
-
-
in, ed. Diehl, E. Fluck and R. Kosfeld, Springer, Berlin, ch. E
-
P. S. Pregosin and R. W. Kunz, in NMR Basic Principles and Progress, ed., P. Diehl, E. Fluck, and, R. Kosfeld, Springer, Berlin, 1979, vol. 16, ch. E, p. 65
-
(1979)
NMR Basic Principles and Progress
, vol.16
, pp. 65
-
-
Pregosin, P.S.1
Kunz, R.W.2
-
51
-
-
33745231055
-
-
A. G. Orpen L. Brammer F. H. Allen O. Kennard D. G. Watson R. Taylor J. Chem. Soc., Dalton Trans., Suppl. 1989 S1
-
(1989)
J. Chem. Soc., Dalton Trans., Suppl.
, pp. 1
-
-
Orpen, A.G.1
Brammer, L.2
Allen, F.H.3
Kennard, O.4
Watson, D.G.5
Taylor, R.6
-
52
-
-
33845340540
-
-
Complexes of the type [PtCl2(PR3)(SR2)] (without chelating P,S-donors), whose crystal structure is known, adopt cis-configuration
-
R. G. Pearson Inorg. Chem. 1973 12 712
-
(1973)
Inorg. Chem.
, vol.12
, pp. 712
-
-
Pearson, R.G.1
-
56
-
-
0345004138
-
-
Steric strain resulting from trans-chelate coordination can be expected to operate in accord with trans-influence in this case Compare, for instance, the covalent radii being 1.39 Å for Pd, and 1.36 Å for Pt. This similarity is attributed to lanthanide contraction affecting the heaviest Group 10 metal. The radii are quoted from
-
P. Kapoor K. Lövqvist Å. Oskarsson J. Mol. Struct. 1998 470 39
-
(1998)
J. Mol. Struct.
, vol.470
, pp. 39
-
-
Kapoor, P.1
Lövqvist, K.2
Oskarsson, Å.3
-
57
-
-
43749110500
-
-
The orientation of the C24-C25 bond is nearly the same in all three complexes. Compare the angles subtended by the vector of the C24-C25 bond and the Cp1 plane being 33.0(1)° in, 54.7(1)° in trans- 2, 55.4(2)° in trans- 3, and 56.3(2)° in cis- 3 Epa and Epc are anodic and cathodic peak potentials, respectively. Potentials determined at the scan rate 0.1 V s-1 are quoted for all irreversible processes The anodic peak current (ipa) was directly proportional to the square root of the scan rate (ipa ∝ ν1/2), which suggests the oxidation to be a standard diffusion-controlled redox transition Chemical reactions following an electron transfer process are well documented for phosphinoferrocenes. For examples, see
-
B. Cordero V. Gómez A. E. Platero-Prats M. Revés J. Echeverría E. Cremades F. Barragán S. Alvarez Dalton Trans. 2008 2832
-
(2008)
Dalton Trans.
, vol.1
, pp. 2832
-
-
Cordero, B.1
Gómez, V.2
Platero-Prats, A.E.3
Revés, M.4
Echeverría, J.5
Cremades, E.6
Barragán, F.7
Alvarez, S.8
-
60
-
-
0040596814
-
-
See also ref. 11a Ferrocene itself showed practically identical response under the experiment conditions. The observed peak separations are higher than the theoretically predicted values (59 mV at 25 °C), presumably due to a high resistance of the analysed solution. No iR drop correction was applied to the data
-
G. Pilloni B. Longato B. Corain J. Organomet. Chem. 1991 420 57
-
(1991)
J. Organomet. Chem.
, vol.420
, pp. 57
-
-
Pilloni, G.1
Longato, B.2
Corain, B.3
-
61
-
-
4243664295
-
-
The process is controlled by diffusion (ip ∝ ν1/2); the separation of the peaks in cyclic voltammogram is 80 mV at a scan rate of 0.1 V s-1
-
C. Hansch A. Leo R. W. Taft Chem. Rev. 1991 91 165
-
(1991)
Chem. Rev.
, vol.91
, pp. 165
-
-
Hansch, C.1
Leo, A.2
Taft, R.W.3
|