메뉴 건너뛰기




Volumn 9, Issue 12, 2013, Pages 5513-5525

Ground- and excited-state geometry optimization of small organic molecules with quantum Monte Carlo

Author keywords

[No Author keywords available]

Indexed keywords


EID: 84890480773     PISSN: 15499618     EISSN: 15499626     Source Type: Journal    
DOI: 10.1021/ct400876y     Document Type: Article
Times cited : (67)

References (91)
  • 64
    • 84890509856 scopus 로고    scopus 로고
    • CFOUR, Coupled-Cluster techniques for Computational Chemistry, a quantum-chemical program package by J.F. Stanton, J. Gauss, M.E. Harding, P.G. Szalay with contributions from A.A. Auer, R.J. Bartlett, U. Benedikt, C. Berger, D.E. Bernholdt, Y.J. Bomble, L. Cheng, O. Christiansen, M. Heckert, O. Heun, C. Huber, T.-C. Jagau, D. Jonsson, J. Jusélius, K. Klein, W.J. Lauderdale, D.A. Matthews, T. Metzroth, L.A. Mück, D.P. O'Neill, D.R. Price, E. Prochnow, C. Puzzarini, K. Ruud, F. Schiffmann, W. Schwalbach, S. Stopkowicz, A. Tajti, J. Vázquez, F. Wang, J.D. Watts and the integral packages MOLECULE (J. Almlöf and P.R. Taylor), PROPS (P.R. Taylor), ABACUS (T. Helgaker, H.J. Aa. Jensen, P. Jørgensen, and J. Olsen), and ECP routines by A. V. Mitin and C. van Wüllen. For the current version, see (accessed July 12, 2012).
    • CFOUR, Coupled-Cluster techniques for Computational Chemistry, a quantum-chemical program package by J.F. Stanton, J. Gauss, M.E. Harding, P.G. Szalay with contributions from A.A. Auer, R.J. Bartlett, U. Benedikt, C. Berger, D.E. Bernholdt, Y.J. Bomble, L. Cheng, O. Christiansen, M. Heckert, O. Heun, C. Huber, T.-C. Jagau, D. Jonsson, J. Jusélius, K. Klein, W.J. Lauderdale, D.A. Matthews, T. Metzroth, L.A. Mück, D.P. O'Neill, D.R. Price, E. Prochnow, C. Puzzarini, K. Ruud, F. Schiffmann, W. Schwalbach, S. Stopkowicz, A. Tajti, J. Vázquez, F. Wang, J.D. Watts and the integral packages MOLECULE (J. Almlöf and P.R. Taylor), PROPS (P.R. Taylor), ABACUS (T. Helgaker, H.J. Aa. Jensen, P. Jørgensen, and J. Olsen), and ECP routines by A. V. Mitin and C. van Wüllen. For the current version, see http://www.cfour.de (accessed July 12, 2012).
  • 71
    • 84890450272 scopus 로고    scopus 로고
    • CHAMP is a quantum Monte Carlo program package written by; and collaborators.
    • CHAMP is a quantum Monte Carlo program package written by Umrigar, C. J.; Filippi, C. and collaborators.
    • Umrigar, C.J.1    Filippi, C.2
  • 73
    • 84890531194 scopus 로고    scopus 로고
    • For the hydrogen atom, we use a more accurate BFD pseudopotential and basis set. private communication.
    • For the hydrogen atom, we use a more accurate BFD pseudopotential and basis set. Dolg, M.; Filippi, C., private communication.
    • Dolg, M.1    Filippi, C.2
  • 79
    • 84890454196 scopus 로고    scopus 로고
    • We take the diffuse functions for the heavy atoms atoms from the aug-cc-pVXZ basis sets in the EMSL Basis Set Library.
    • We take the diffuse functions for the heavy atoms atoms from the aug-cc-pVXZ basis sets in the EMSL Basis Set Library (http://bse.pnl.gov).
  • 80
    • 0000749144 scopus 로고    scopus 로고
    • As Jastrow correlation factor, we use the exponential of the sum of three fifth-order polynomials of the electron-nuclear (e-n), the electron-electron (e-e), and of pure 3-body mixed e-e and e-n distances, respectively. The Jastrow factor is adapted to deal with pseudo-atoms, and the scaling factor κ is set to 0.6 a.u. The 2-body Jastrow factor includes five parameters in the e-e terms and four parameters for each atom type in the e-n terms. The 3-body Jastrow factor has 15 additional parameters per atom type. In both Jastrow factors, the same scaling parameter κ is used for all inter-particle distances. For s- trans acrolein (3 atom types), we have therefore a total of 17 and 62 parameters in the 2-body and the 3-body Jastrow factor, respectively. - 226
    • Filippi, C.; Umrigar, C. J. J. Chem. Phys. 1996, 105, 213-226 As Jastrow correlation factor, we use the exponential of the sum of three fifth-order polynomials of the electron-nuclear (e-n), the electron-electron (e-e), and of pure 3-body mixed e-e and e-n distances, respectively. The Jastrow factor is adapted to deal with pseudo-atoms, and the scaling factor κ is set to 0.6 a.u. The 2-body Jastrow factor includes five parameters in the e-e terms and four parameters for each atom type in the e-n terms. The 3-body Jastrow factor has 15 additional parameters per atom type. In both Jastrow factors, the same scaling parameter κ is used for all inter-particle distances. For s- trans acrolein (3 atom types), we have therefore a total of 17 and 62 parameters in the 2-body and the 3-body Jastrow factor, respectively.
    • (1996) J. Chem. Phys. , vol.105 , pp. 213
    • Filippi, C.1    Umrigar, C.J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.