메뉴 건너뛰기




Volumn 112, Issue 1, 2014, Pages 48-60

Genomic prediction in CIMMYT maize and wheat breeding programs

Author keywords

Bayesian LASSO; Environment interaction; Genomic selection; Genotype; International Maize and Wheat Improvement Center; Reproducing kernel Hilbert space regression

Indexed keywords

BIOMARKER; GENOMICS; GENOTYPE; HERITABILITY; MAIZE; PLANT BREEDING; POPULATION STRUCTURE; RESEARCH; WHEAT;

EID: 84890309817     PISSN: 0018067X     EISSN: 13652540     Source Type: Journal    
DOI: 10.1038/hdy.2013.16     Document Type: Article
Times cited : (314)

References (35)
  • 1
    • 54949113665 scopus 로고    scopus 로고
    • Molecular markers and selection of complex traits in plants: Learning from the last 20 years
    • Bernardo R (2008). Molecular markers and selection of complex traits in plants: learning from the last 20 years. Crop Sci 48: 1649-1664.
    • (2008) Crop Sci , vol.48 , pp. 1649-1664
    • Bernardo, R.1
  • 2
    • 34548176501 scopus 로고    scopus 로고
    • Prospects for genome-wide selection for quantitative traits in maize
    • Bernardo R, Yu Y (2007). Prospects for genome-wide selection for quantitative traits in maize. Crop Sci 47: 1082-1090.
    • (2007) Crop Sci , vol.47 , pp. 1082-1090
    • Bernardo, R.1    Yu, Y.2
  • 3
    • 33847284571 scopus 로고    scopus 로고
    • Modeling additive × environment and additive × additive × environment using genetic covariances of relatives of wheat genotypes
    • Burgueno J, Crossa J, Cornelius PL, Trethowan R, McLaren G, Krishnamachari A (2007). Modeling additive × environment and additive × additive × environment using genetic covariances of relatives of wheat genotypes. Crop Sci 43: 311-320.
    • (2007) Crop Sci , vol.43 , pp. 311-320
    • Burgueno, J.1    Crossa, J.2    Cornelius, P.L.3    Trethowan, R.4    McLaren, G.5    Krishnamachari, A.6
  • 4
    • 79955538191 scopus 로고    scopus 로고
    • Prediction assessment of linear mixed models for multienvironment trials
    • Burgueno J, Crossa J, Cotes JM, San Vicente F, Das B (2011). Prediction assessment of linear mixed models for multienvironment trials. Crop Sci 51: 944-954.
    • (2011) Crop Sci , vol.51 , pp. 944-954
    • Burgueno, J.1    Crossa, J.2    Cotes, J.M.3    San Vicente, F.4    Das, B.5
  • 5
    • 84856866301 scopus 로고    scopus 로고
    • Genomic prediction of breeding values when modeling genotype × environment interaction using pedigree and dense molecular markers
    • Burgueno J, de los Campos GDL, Weigel K, Crossa J (2012). Genomic prediction of breeding values when modeling genotype × environment interaction using pedigree and dense molecular markers. Crop Sci 52: 707-719.
    • (2012) Crop Sci , vol.52 , pp. 707-719
    • Burgueno, J.1    De Los Campos, G.D.L.2    Weigel, K.3    Crossa, J.4
  • 6
    • 78649325488 scopus 로고    scopus 로고
    • Prediction of genetic values of quantitative traits in plant breeding using pedigree and molecular markers
    • Crossa J, de los Campos G, Perez P, Gianola D, Burgueno J, Araus JL et al. (2010). Prediction of genetic values of quantitative traits in plant breeding using pedigree and molecular markers. Genetics 186: 713-724.
    • (2010) Genetics , vol.186 , pp. 713-724
    • Crossa, J.1    De Los Campos, G.2    Perez, P.3    Gianola, D.4    Burgueno, J.5    Araus, J.L.6
  • 8
    • 54449097329 scopus 로고    scopus 로고
    • Accuracy of predicting the genetic risk of disease using a genome-wide approach
    • Daetwyler HD, Villanueva B, Woolliams J (2008). Accuracy of predicting the genetic risk of disease using a genome-wide approach. PloS ONE 3: e3395.
    • (2008) PloS ONE , vol.3
    • Daetwyler, H.D.1    Villanueva, B.2    Woolliams, J.3
  • 9
    • 67849130524 scopus 로고    scopus 로고
    • Predicting quantitative traits with regression models for dense molecular markers and pedigree
    • de los Campos G, Naya H, Gianola D, Crossa J, Legarra A, Manfredi E et al. (2009). Predicting quantitative traits with regression models for dense molecular markers and pedigree. Genetics 182: 375-385.
    • (2009) Genetics , vol.182 , pp. 375-385
    • De Los Campos, G.1    Naya, H.2    Gianola, D.3    Crossa, J.4    Legarra, A.5    Manfredi, E.6
  • 10
    • 78951477718 scopus 로고    scopus 로고
    • Semi-parametric genomic-enabled prediction of genetic values using reproducing kernel Hilbert spaces methods
    • de los Campos G, Gianola D, Rosa GJM, Weigel K, Crossa J (2010). Semi-parametric genomic-enabled prediction of genetic values using reproducing kernel Hilbert spaces methods. Genet Res 92: 295-308.
    • (2010) Genet Res , vol.92 , pp. 295-308
    • De Los Campos, G.1    Gianola, D.2    Rosa, G.J.M.3    Weigel, K.4    Crossa, J.5
  • 11
    • 33746424900 scopus 로고    scopus 로고
    • Genomic-assisted prediction of genetic values with semiparametric procedures
    • Gianola D, Fernando R, Stella A (2006). Genomic-assisted prediction of genetic values with semiparametric procedures. Genetics 173: 1761-1776.
    • (2006) Genetics , vol.173 , pp. 1761-1776
    • Gianola, D.1    Fernando, R.2    Stella, A.3
  • 12
    • 80053594474 scopus 로고    scopus 로고
    • Predicting complex quantitative traits with Bayesian neural networks: A case study with Jersey cows and wheat
    • Gianola D, Okut H, Weigel KA, Rosa GJM (2011). Predicting complex quantitative traits with Bayesian neural networks: a case study with Jersey cows and wheat. BMC Genet 12: 87.
    • (2011) BMC Genet , vol.12 , pp. 87
    • Gianola, D.1    Okut, H.2    Weigel, K.A.3    Rosa, G.J.M.4
  • 15
    • 37249083895 scopus 로고    scopus 로고
    • The impact of genetic relationship information on genome-assisted breeding values
    • Habier D, Fernando RL, Dekkers JCM (2007). The impact of genetic relationship information on genome-assisted breeding values. Genetics 177: 2389-2397.
    • (2007) Genetics , vol.177 , pp. 2389-2397
    • Habier, D.1    Fernando, R.L.2    Dekkers, J.C.M.3
  • 16
    • 59349098163 scopus 로고    scopus 로고
    • Invited review: Genomic selection in dairy cattle: Progress and challenges
    • Hayes BJ, Bowman PJ, Chamberlain AJ, Goddard ME (2009). Invited review: genomic selection in dairy cattle: progress and challenges. J Dairy Sci 92: 433-443.
    • (2009) J Dairy Sci , vol.92 , pp. 433-443
    • Hayes, B.J.1    Bowman, P.J.2    Chamberlain, A.J.3    Goddard, M.E.4
  • 18
    • 85167520539 scopus 로고    scopus 로고
    • Genomic selection accuracy using multifamily prediction models in a wheat breeding program
    • Heffner EL, Jannink J-L, Sorrells M (2011). Genomic selection accuracy using multifamily prediction models in a wheat breeding program. The Plant Genome 4: 65-75.
    • (2011) The Plant Genome , vol.4 , pp. 65-75
    • Heffner, E.L.1    Jannink, J.-L.2    Sorrells, M.3
  • 19
    • 84856920619 scopus 로고    scopus 로고
    • Factors affecting the accuracy of genotype imputation in populations from several maize breeding programs
    • Hickey JM, Crossa J, Babu R, de los Campos G (2012). Factors affecting the accuracy of genotype imputation in populations from several maize breeding programs. Crop Sci 52: 654-663.
    • (2012) Crop Sci , vol.52 , pp. 654-663
    • Hickey, J.M.1    Crossa, J.2    Babu, R.3    De Los Campos, G.4
  • 20
    • 70949108214 scopus 로고    scopus 로고
    • Accuracy of genotypic value predictions for marker-based selection in biparental plant populations
    • Lorenzana RE, Bernardo R (2009). Accuracy of genotypic value predictions for marker-based selection in biparental plant populations. Theor Appl Genet 120: 151-161.
    • (2009) Theor Appl Genet , vol.120 , pp. 151-161
    • Lorenzana, R.E.1    Bernardo, R.2
  • 21
    • 84862487776 scopus 로고    scopus 로고
    • Six degrees of epistasis: Statistical network models for GWAS
    • McKinney BA, Pajewski NM (2012). Six degrees of epistasis: statistical network models for GWAS. Front Genet 2: 1-6.
    • (2012) Front Genet , vol.2 , pp. 1-6
    • McKinney, B.A.1    Pajewski, N.M.2
  • 22
    • 0035045051 scopus 로고    scopus 로고
    • Prediction of total genetic values using genome-wide dense marker maps
    • Meuwissen THE, Hayes BJ, Goddard ME (2001). Prediction of total genetic values using genome-wide dense marker maps. Genetics 157: 1819-1829.
    • (2001) Genetics , vol.157 , pp. 1819-1829
    • Meuwissen, T.H.E.1    Hayes, B.J.2    Goddard, M.E.3
  • 24
  • 25
    • 85168500140 scopus 로고    scopus 로고
    • Genomic-enabled prediction based on molecular markers and pedigree using the Bayesian Linear Regression Package in R
    • Perez P, de los Campos G, Crossa J, Gianola D (2010). Genomic-enabled prediction based on molecular markers and pedigree using the Bayesian Linear Regression Package in R. The Plant Genome 3: 106-116.
    • (2010) The Plant Genome , vol.3 , pp. 106-116
    • Perez, P.1    De Los Campos, G.2    Crossa, J.3    Gianola, D.4
  • 30
    • 55849133422 scopus 로고    scopus 로고
    • Efficient methods to compute genomic predictions
    • VanRaden PM (2008). Efficient methods to compute genomic predictions. J Dairy Sci 91: 4414-4423.
    • (2008) J Dairy Sci , vol.91 , pp. 4414-4423
    • Vanraden, P.M.1
  • 31
    • 84867878634 scopus 로고    scopus 로고
    • Prediction of genetic values of quantitative traits with epistatic effects in plant breeding populations
    • Wang D, El-Basyoni IS, Baenziger PS, Crossa J, Eskridge K, Dweikat I (2012). Prediction of genetic values of quantitative traits with epistatic effects in plant breeding populations. Heredity 109: 313-319.
    • (2012) Heredity , vol.109 , pp. 313-319
    • Wang, D.1    El-Basyoni, I.S.2    Baenziger, P.S.3    Crossa, J.4    Eskridge, K.5    Dweikat, I.6
  • 32
    • 79958745424 scopus 로고    scopus 로고
    • Identifying QTLs and epistasis in structured plant breeding populations using adaptive mixed LASSO
    • Wang D, Eskridge K, Crossa J (2011). Identifying QTLs and epistasis in structured plant breeding populations using adaptive mixed LASSO. J Agric Biol Environ Stat 16: 170-184.
    • (2011) J Agric Biol Environ Stat , vol.16 , pp. 170-184
    • Wang, D.1    Eskridge, K.2    Crossa, J.3
  • 33
    • 84883177912 scopus 로고    scopus 로고
    • Effectiveness of genomic prediction of maize hybrid performance in different breeding populations and environments
    • Windhausen VS, Atlin GN, Crossa J, Hickey JM, Grudloyma P, Terekegne A et al. (2012). Effectiveness of genomic prediction of maize hybrid performance in different breeding populations and environments. Genes Genomes Genet 2: 1427-1436.
    • (2012) Genes Genomes Genet , vol.2 , pp. 1427-1436
    • Windhausen, V.S.1    Atlin, G.N.2    Crossa, J.3    Hickey, J.M.4    Grudloyma, P.5    Terekegne, A.6
  • 34
    • 22144459429 scopus 로고    scopus 로고
    • A penalized maximum likelihood method for estimating epistatic effects of QTL
    • Zhang YM, Xu S (2005). A penalized maximum likelihood method for estimating epistatic effects of QTL. Heredity 95: 96-104.
    • (2005) Heredity , vol.95 , pp. 96-104
    • Zhang, Y.M.1    Xu, S.2
  • 35


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.