메뉴 건너뛰기




Volumn 125, Issue 4, 2012, Pages 759-771

Genome-enabled prediction of genetic values using radial basis function neural networks

Author keywords

[No Author keywords available]

Indexed keywords

BAYESIAN NETWORKS; FORECASTING; FUNCTIONS; GENES; HEAT CONDUCTION; IMAGE SEGMENTATION; REGRESSION ANALYSIS;

EID: 84866328184     PISSN: 00405752     EISSN: None     Source Type: Journal    
DOI: 10.1007/s00122-012-1868-9     Document Type: Article
Times cited : (162)

References (38)
  • 2
    • 0000621802 scopus 로고
    • Multivariable functional interpolation and adaptive networks
    • Broomhead DS, Lowe D (1988) Multivariable functional interpolation and adaptive networks. Complex Syst 2: 321-355.
    • (1988) Complex Syst , vol.2 , pp. 321-355
    • Broomhead, D.S.1    Lowe, D.2
  • 3
    • 0026116468 scopus 로고
    • Orthogonal least squares learning algorithms for radial basis function networks
    • Chen S, Cowan CF, Grant PM (1991) Orthogonal least squares learning algorithms for radial basis function networks. IEEE Trans Neural Netw 2(2): 302-309.
    • (1991) IEEE Trans Neural Netw , vol.2 , Issue.2 , pp. 302-309
    • Chen, S.1    Cowan, C.F.2    Grant, P.M.3
  • 8
    • 69149088569 scopus 로고    scopus 로고
    • Reproducing kernel Hilbert spaces regression: a general framework for genetic evaluation
    • de los Campos G, Gianola D, Rosa GJM (2009b) Reproducing kernel Hilbert spaces regression: a general framework for genetic evaluation. J Anim Sci 87: 1883-1887.
    • (2009) J Anim Sci , vol.87 , pp. 1883-1887
    • de Los Campos, G.1    Gianola, D.2    Rosa, G.J.M.3
  • 9
    • 78951477718 scopus 로고    scopus 로고
    • Semi-parametric genomic-enabled prediction of genetic values using reproducing kernel Hilbert spaces methods
    • de los Campos G, Gianola D, Rosa GJM, Weigel KA, Crossa J (2010) Semi-parametric genomic-enabled prediction of genetic values using reproducing kernel Hilbert spaces methods. Genet Res 92: 295-308.
    • (2010) Genet Res , vol.92 , pp. 295-308
    • de Los Campos, G.1    Gianola, D.2    Rosa, G.J.M.3    Weigel, K.A.4    Crossa, J.5
  • 10
    • 38949088255 scopus 로고    scopus 로고
    • Epistatic interactions in crosses of Illinois high oil × Illinois low oil and of Illinois high protein × Illinois low protein
    • Dudley JW (2008) Epistatic interactions in crosses of Illinois high oil × Illinois low oil and of Illinois high protein × Illinois low protein. Crop Sci 48: 59-68.
    • (2008) Crop Sci , vol.48 , pp. 59-68
    • Dudley, J.W.1
  • 11
    • 77951047779 scopus 로고    scopus 로고
    • Epistatic models improve between years prediction and prediction of testcross performance in corn
    • Dudley JW, Johnson GR (2010) Epistatic models improve between years prediction and prediction of testcross performance in corn. Crop Sci 50: 763-769.
    • (2010) Crop Sci , vol.50 , pp. 763-769
    • Dudley, J.W.1    Johnson, G.R.2
  • 12
    • 45849117254 scopus 로고    scopus 로고
    • Reproducing kernel Hilbert space regression methods for genomic-assisted prediction of quantitative traits
    • Gianola D, van Kaam JBCHM (2008) Reproducing kernel Hilbert space regression methods for genomic-assisted prediction of quantitative traits. Genetics 178: 2289-2303.
    • (2008) Genetics , vol.178 , pp. 2289-2303
    • Gianola, D.1    van Kaam, J.B.C.H.M.2
  • 13
    • 33746424900 scopus 로고    scopus 로고
    • Genomic-assisted prediction of genetic values with semiparametric procedures
    • Gianola D, Fernando R, Stella A (2006) Genomic-assisted prediction of genetic values with semiparametric procedures. Genetics 173: 1761-1776.
    • (2006) Genetics , vol.173 , pp. 1761-1776
    • Gianola, D.1    Fernando, R.2    Stella, A.3
  • 14
    • 80053594474 scopus 로고    scopus 로고
    • Predicting complex quantitative traits with neural networks: a case study with Jersey cows and wheat
    • doi:101186/1471-2156-12-87
    • Gianola D, Okut H, Weigel KA, Rosa GJM (2011) Predicting complex quantitative traits with neural networks: a case study with Jersey cows and wheat. BMC Genet 12: 87. doi: 101186/1471-2156-12-87.
    • (2011) BMC Genet , vol.12 , pp. 87
    • Gianola, D.1    Okut, H.2    Weigel, K.A.3    Rosa, G.J.M.4
  • 15
    • 45849103551 scopus 로고    scopus 로고
    • Non parametric methods for incorporating genomic information into genetic evaluation: an application to mortality in broilers
    • Gonzalez-Recio O, Gianola D, Long N, Wiegel K, Rosa GJM, Avendaño S (2008) Non parametric methods for incorporating genomic information into genetic evaluation: an application to mortality in broilers. Genetics 178: 2305-2313.
    • (2008) Genetics , vol.178 , pp. 2305-2313
    • Gonzalez-Recio, O.1    Gianola, D.2    Long, N.3    Wiegel, K.4    Rosa, G.J.M.5    Avendaño, S.6
  • 18
    • 59349098163 scopus 로고    scopus 로고
    • Invited review: genomic selection in dairy cattle: progress and challenges
    • Hayes BJ, Bowman PJ, Chamberlain AJ, Goddard ME (2009) Invited review: genomic selection in dairy cattle: progress and challenges. J Dairy Sci 92: 433-443.
    • (2009) J Dairy Sci , vol.92 , pp. 433-443
    • Hayes, B.J.1    Bowman, P.J.2    Chamberlain, A.J.3    Goddard, M.E.4
  • 20
    • 40149087235 scopus 로고    scopus 로고
    • Data and theory point to mainly additive genetic variance for complex traits
    • doi:10.1371/journal.pgen.1000008
    • Hill WG, Goddard ME, Visscher PM (2008) Data and theory point to mainly additive genetic variance for complex traits. PLoS Genet 4(2): e1000008. doi: 10. 1371/journal. pgen. 1000008.
    • (2008) PLoS Genet , vol.4 , Issue.2
    • Hill, W.G.1    Goddard, M.E.2    Visscher, P.M.3
  • 21
    • 2442417788 scopus 로고    scopus 로고
    • Epistasis and plant breeding
    • Holland JB (2001) Epistasis and plant breeding. Plant Breed Rev 21: 27-92.
    • (2001) Plant Breed Rev , vol.21 , pp. 27-92
    • Holland, J.B.1
  • 22
    • 77951088882 scopus 로고    scopus 로고
    • Theoretical and biological foundations of plant breeding
    • K. R. Lamkey and M. Lee (Eds.), Ames: Blackwell Publishing
    • Holland JB (2006) Theoretical and biological foundations of plant breeding. In: Lamkey KR, Lee M (eds) Plant breeding: the Arnel R Hallauer International Symposium. Blackwell Publishing, Ames.
    • (2006) Plant Breeding: The Arnel R Hallauer International Symposium
    • Holland, J.B.1
  • 23
    • 0032030147 scopus 로고    scopus 로고
    • Use of radial basis function type artificial neural networks for runoff simulation
    • Jayawardena AW, Fernando DAK (1998) Use of radial basis function type artificial neural networks for runoff simulation. Comput-Aided Civ Inf Eng 13: 91-99.
    • (1998) Comput -Aided Civ Inf Eng , vol.13 , pp. 91-99
    • Jayawardena, A.W.1    Fernando, D.A.K.2
  • 25
    • 77958480125 scopus 로고    scopus 로고
    • Radial basis function regression methods for predicting quantitative traits using SNP markers
    • Long N, Gianola D, Rosa GJM, Weigel KA, Kranis A, Gonzalez-Recio O (2010) Radial basis function regression methods for predicting quantitative traits using SNP markers. Genet Res 92: 209-225.
    • (2010) Genet Res , vol.92 , pp. 209-225
    • Long, N.1    Gianola, D.2    Rosa, G.J.M.3    Weigel, K.A.4    Kranis, A.5    Gonzalez-Recio, O.6
  • 26
    • 79960833949 scopus 로고    scopus 로고
    • Marker-assisted prediction of non-additive genetic values
    • doi:10.1007/s10709-011-9588-7
    • Long N, Gianola D, Rosa GJM, Weigel KA (2011) Marker-assisted prediction of non-additive genetic values. Genetica. doi: 10. 1007/s10709-011-9588-7.
    • (2011) Genetica
    • Long, N.1    Gianola, D.2    Rosa, G.J.M.3    Weigel, K.A.4
  • 27
    • 0035045051 scopus 로고    scopus 로고
    • Prediction of total genetic values using genome-wide dense marker maps
    • Meuwissen THE, Hayes BJ, Goddard ME (2001) Prediction of total genetic values using genome-wide dense marker maps. Genetics 157: 1819-1829.
    • (2001) Genetics , vol.157 , pp. 1819-1829
    • Meuwissen, T.H.E.1    Hayes, B.J.2    Goddard, M.E.3
  • 28
  • 29
    • 0000106040 scopus 로고
    • Universal approximation using radial basis function networks
    • Park J, Sandberg IW (1991) Universal approximation using radial basis function networks. Neural Comput 3(2): 246-259.
    • (1991) Neural Comput , vol.3 , Issue.2 , pp. 246-259
    • Park, J.1    Sandberg, I.W.2
  • 30
    • 85168500140 scopus 로고    scopus 로고
    • Genomic-enabled prediction based on molecular markers and pedigree using the BLR package in R
    • Pérez P, de los Campos G, Crossa J, Gianola D (2010) Genomic-enabled prediction based on molecular markers and pedigree using the BLR package in R. Plant Genome 3(2): 106-116.
    • (2010) Plant Genome , vol.3 , Issue.2 , pp. 106-116
    • Pérez, P.1    de Los Campos, G.2    Crossa, J.3    Gianola, D.4
  • 31
    • 0025490985 scopus 로고
    • Networks for approximation and learning
    • Poggio T, Girosi F (1990) Networks for approximation and learning. Proc IEEE 78: 1481-1497.
    • (1990) Proc IEEE , vol.78 , pp. 1481-1497
    • Poggio, T.1    Girosi, F.2
  • 33
    • 34547254709 scopus 로고    scopus 로고
    • Using adial basis function networks and significance testing to select effective siRNA sequences
    • Takasaki S, Kawamura Y (2007) Using adial basis function networks and significance testing to select effective siRNA sequences. Comput Stat Data Anal 51: 6476-6487.
    • (2007) Comput Stat Data Anal , vol.51 , pp. 6476-6487
    • Takasaki, S.1    Kawamura, Y.2
  • 34
    • 55849133422 scopus 로고    scopus 로고
    • Efficient methods to compute genomic prediction
    • VanRaden PM (2008) Efficient methods to compute genomic prediction. J Dairy Sci 91: 4414-4423.
    • (2008) J Dairy Sci , vol.91 , pp. 4414-4423
    • VanRaden, P.M.1
  • 35
    • 0000450226 scopus 로고
    • Improper priors, spline smoothing and the problem of guarding against model errors in regression
    • Wahba G (1978) Improper priors, spline smoothing and the problem of guarding against model errors in regression. J Roy Stat Soc B 40: 364-372.
    • (1978) J Roy Stat Soc B , vol.40 , pp. 364-372
    • Wahba, G.1
  • 36
    • 0003466536 scopus 로고
    • Philadelphia: Society for Industrial and applied Mathematics
    • Wahba G (1990) Spline models for observational data. Society for Industrial and applied Mathematics, Philadelphia.
    • (1990) Spline Models for Observational Data
    • Wahba, G.1
  • 37
    • 22144459429 scopus 로고    scopus 로고
    • A penalized maximum likelihood method for estimating epistatic effects of QTL
    • Zhang YM, Xu S (2005) A penalized maximum likelihood method for estimating epistatic effects of QTL. Heredity 95: 96-104.
    • (2005) Heredity , vol.95 , pp. 96-104
    • Zhang, Y.M.1    Xu, S.2
  • 38
    • 79955612435 scopus 로고    scopus 로고
    • A genetic fuzzy radial basis function neural network for structural health monitoring of composite laminated beams
    • Zheng S, Li Z, Wang H (2011) A genetic fuzzy radial basis function neural network for structural health monitoring of composite laminated beams. Expert Syst Appl 38: 11837-11842.
    • (2011) Expert Syst Appl , vol.38 , pp. 11837-11842
    • Zheng, S.1    Li, Z.2    Wang, H.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.