메뉴 건너뛰기




Volumn 259, Issue , 2014, Pages 114-134

Selection of polynomial chaos bases via Bayesian model uncertainty methods with applications to sparse approximation of PDEs with stochastic inputs

Author keywords

Bayesian model average; Bayesian model uncertainty; Generalized polynomial chaos; LASSO; MCMC; Median probability model; Splines; Uncertainty quantification

Indexed keywords

BAYESIAN NETWORKS; FUNCTION EVALUATION; INTERPOLATION; MARKOV PROCESSES; MONTE CARLO METHODS; POLYNOMIAL APPROXIMATION; REGRESSION ANALYSIS; STOCHASTIC MODELS; UNCERTAINTY ANALYSIS;

EID: 84890257825     PISSN: 00219991     EISSN: 10902716     Source Type: Journal    
DOI: 10.1016/j.jcp.2013.11.016     Document Type: Article
Times cited : (29)

References (40)
  • 1
    • 0004007880 scopus 로고
    • John Wiley & Sons, Inc., New York, NY, USA
    • Ripley B.D. Stochastic Simulation 1987, John Wiley & Sons, Inc., New York, NY, USA.
    • (1987) Stochastic Simulation
    • Ripley, B.D.1
  • 3
    • 0037249229 scopus 로고    scopus 로고
    • The Wiener-Askey polynomial chaos for stochastic differential equations
    • Xiu D., Karniadakis G. The Wiener-Askey polynomial chaos for stochastic differential equations. SIAM J. Sci. Comput. 2002, 24(2):619-644.
    • (2002) SIAM J. Sci. Comput. , vol.24 , Issue.2 , pp. 619-644
    • Xiu, D.1    Karniadakis, G.2
  • 5
    • 21444449245 scopus 로고    scopus 로고
    • An adaptive multi-element generalized polynomial chaos method for stochastic differential equations
    • Wan X., Karniadakis G. An adaptive multi-element generalized polynomial chaos method for stochastic differential equations. J. Comput. Phys. 2005, 209(2):617-642.
    • (2005) J. Comput. Phys. , vol.209 , Issue.2 , pp. 617-642
    • Wan, X.1    Karniadakis, G.2
  • 6
    • 33749326978 scopus 로고    scopus 로고
    • Multi-element generalized polynomial chaos for arbitrary probability measures
    • Wan X., Karniadakis G. Multi-element generalized polynomial chaos for arbitrary probability measures. SIAM J. Sci. Comput. 2006, 28(3):901-928.
    • (2006) SIAM J. Sci. Comput. , vol.28 , Issue.3 , pp. 901-928
    • Wan, X.1    Karniadakis, G.2
  • 7
    • 0035964634 scopus 로고    scopus 로고
    • Solution of stochastic partial differential equations using Galerkin finite element techniques
    • Deb M., Babuška I., Oden J. Solution of stochastic partial differential equations using Galerkin finite element techniques. Comput. Methods Appl. Mech. Eng. 2001, 190(48):6359-6372.
    • (2001) Comput. Methods Appl. Mech. Eng. , vol.190 , Issue.48 , pp. 6359-6372
    • Deb, M.1    Babuška, I.2    Oden, J.3
  • 8
    • 13844319204 scopus 로고    scopus 로고
    • Galerkin finite element approximations of stochastic elliptic partial differential equations
    • Babuška I., Tempone R., Zouraris G. Galerkin finite element approximations of stochastic elliptic partial differential equations. SIAM J. Numer. Anal. 2004, 42(2):800-825.
    • (2004) SIAM J. Numer. Anal. , vol.42 , Issue.2 , pp. 800-825
    • Babuška, I.1    Tempone, R.2    Zouraris, G.3
  • 10
    • 34548216854 scopus 로고    scopus 로고
    • A stochastic collocation method for elliptic partial differential equations with random input data
    • Babuška I., Nobile F., Tempone R. A stochastic collocation method for elliptic partial differential equations with random input data. SIAM J. Numer. Anal. 2007, 45(3):1005-1034.
    • (2007) SIAM J. Numer. Anal. , vol.45 , Issue.3 , pp. 1005-1034
    • Babuška, I.1    Nobile, F.2    Tempone, R.3
  • 11
    • 33646577797 scopus 로고    scopus 로고
    • High-order collocation methods for differential equations with random inputs
    • Xiu D., Hesthaven J.S. High-order collocation methods for differential equations with random inputs. SIAM J. Sci. Comput. 2005, 27(3):1118-1139.
    • (2005) SIAM J. Sci. Comput. , vol.27 , Issue.3 , pp. 1118-1139
    • Xiu, D.1    Hesthaven, J.S.2
  • 12
    • 84901051203 scopus 로고    scopus 로고
    • Stochastic finite element: a non intrusive approach by regression
    • Berveiller M., Sudret B., Lemaire M. Stochastic finite element: a non intrusive approach by regression. Eur. J. Comput. Mech. 2006, 15(1-3):81-92.
    • (2006) Eur. J. Comput. Mech. , vol.15 , Issue.1-3 , pp. 81-92
    • Berveiller, M.1    Sudret, B.2    Lemaire, M.3
  • 13
    • 39849107510 scopus 로고    scopus 로고
    • Global sensitivity analysis using polynomial chaos expansions
    • Sudret B. Global sensitivity analysis using polynomial chaos expansions. Reliab. Eng. Syst. Saf. 2008, 93(7):964-979.
    • (2008) Reliab. Eng. Syst. Saf. , vol.93 , Issue.7 , pp. 964-979
    • Sudret, B.1
  • 14
    • 79951768991 scopus 로고    scopus 로고
    • A non-adapted sparse approximation of PDEs with stochastic inputs
    • Doostan A., Owhadi H. A non-adapted sparse approximation of PDEs with stochastic inputs. J. Comput. Phys. 2011, 230(8):3015-3034.
    • (2011) J. Comput. Phys. , vol.230 , Issue.8 , pp. 3015-3034
    • Doostan, A.1    Owhadi, H.2
  • 15
    • 84877881686 scopus 로고    scopus 로고
    • l1 minimization method for stochastic partial differential equations
    • l1 minimization method for stochastic partial differential equations. J. Comput. Phys. 2013, 248:87-108.
    • (2013) J. Comput. Phys. , vol.248 , pp. 87-108
    • Yang, X.1    Karniadakis, G.2
  • 18
    • 0035591051 scopus 로고    scopus 로고
    • On the relationship between Markov chain Monte Carlo methods for model uncertainty
    • Godsill S.J. On the relationship between Markov chain Monte Carlo methods for model uncertainty. J. Comput. Graph. Stat. 2001, 10(2):230-248.
    • (2001) J. Comput. Graph. Stat. , vol.10 , Issue.2 , pp. 230-248
    • Godsill, S.J.1
  • 19
    • 0041696122 scopus 로고    scopus 로고
    • On Bayesian model and variable selection using MCMC
    • Dellaportas P., Forster J.J., Ntzoufras I. On Bayesian model and variable selection using MCMC. Stat. Comput. 2002, 12(1):27-36. 10.1023/A:1013164120801.
    • (2002) Stat. Comput. , vol.12 , Issue.1 , pp. 27-36
    • Dellaportas, P.1    Forster, J.J.2    Ntzoufras, I.3
  • 20
    • 77953359190 scopus 로고    scopus 로고
    • Model uncertainty and variable selection in Bayesian lasso regression
    • Hans C. Model uncertainty and variable selection in Bayesian lasso regression. Stat. Comput. 2010, 20(2):221-229.
    • (2010) Stat. Comput. , vol.20 , Issue.2 , pp. 221-229
    • Hans, C.1
  • 21
    • 0011373760 scopus 로고    scopus 로고
    • Variable selection for regression models
    • Kuo L., Mallick B. Variable selection for regression models. Sankhyā, Ser. B 1998, 60(1):65-81.
    • (1998) Sankhyā, Ser. B , vol.60 , Issue.1 , pp. 65-81
    • Kuo, L.1    Mallick, B.2
  • 23
    • 84950945692 scopus 로고
    • Model selection and accounting for model uncertainty in graphical models using Occam's window
    • Madigan D., Raftery A. Model selection and accounting for model uncertainty in graphical models using Occam's window. J. Am. Stat. Assoc. 1994, 89(428):1535-1546.
    • (1994) J. Am. Stat. Assoc. , vol.89 , Issue.428 , pp. 1535-1546
    • Madigan, D.1    Raftery, A.2
  • 24
    • 4043135554 scopus 로고    scopus 로고
    • Optimal predictive model selection
    • Barbieri M.M., Berger J.O. Optimal predictive model selection. Ann. Stat. 2004, 32(3):870-897.
    • (2004) Ann. Stat. , vol.32 , Issue.3 , pp. 870-897
    • Barbieri, M.M.1    Berger, J.O.2
  • 25
    • 34047123580 scopus 로고    scopus 로고
    • Convergence rates for sparse chaos approximations of elliptic problems with stochastic coefficients
    • Todor R., Schwab C. Convergence rates for sparse chaos approximations of elliptic problems with stochastic coefficients. IMA J. Numer. Anal. 2007, 27(2):232-261.
    • (2007) IMA J. Numer. Anal. , vol.27 , Issue.2 , pp. 232-261
    • Todor, R.1    Schwab, C.2
  • 27
    • 78751706487 scopus 로고    scopus 로고
    • Adaptive sparse polynomial chaos expansion based on least angle regression
    • Blatman G., Sudret B. Adaptive sparse polynomial chaos expansion based on least angle regression. J. Comput. Phys. 2011, 230(6):2345-2367.
    • (2011) J. Comput. Phys. , vol.230 , Issue.6 , pp. 2345-2367
    • Blatman, G.1    Sudret, B.2
  • 28
    • 33746346426 scopus 로고    scopus 로고
    • Karhunen-Loéve approximation of random fields by generalized fast multipole methods
    • Uncertainty Quantification in Simulation Science
    • Schwab C., Todor R.A. Karhunen-Loéve approximation of random fields by generalized fast multipole methods. J. Comput. Phys. 2006, 217(1):100-122.
    • (2006) J. Comput. Phys. , vol.217 , Issue.1 , pp. 100-122
    • Schwab, C.1    Todor, R.A.2
  • 29
    • 49549105778 scopus 로고    scopus 로고
    • The Bayesian lasso
    • Park T., Casella G. The Bayesian lasso. J. Am. Stat. Assoc. 2008, 103(482):681-686.
    • (2008) J. Am. Stat. Assoc. , vol.103 , Issue.482 , pp. 681-686
    • Park, T.1    Casella, G.2
  • 30
    • 78049484065 scopus 로고    scopus 로고
    • Penalized regression, standard errors, and Bayesian lassos
    • Kyung M., Gill J., Ghosh M., Casella G. Penalized regression, standard errors, and Bayesian lassos. Bayesian Anal. 2010, 5(2):369-412.
    • (2010) Bayesian Anal. , vol.5 , Issue.2 , pp. 369-412
    • Kyung, M.1    Gill, J.2    Ghosh, M.3    Casella, G.4
  • 31
    • 85194972808 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the lasso
    • Tibshirani R. Regression shrinkage and selection via the lasso. J. R. Stat. Soc., Ser. B 1996, 58:267-288.
    • (1996) J. R. Stat. Soc., Ser. B , vol.58 , pp. 267-288
    • Tibshirani, R.1
  • 32
    • 84875383426 scopus 로고    scopus 로고
    • On Bayesian lasso variable selection and the specification of the shrinkage parameter
    • Lykou A., Ntzoufras I. On Bayesian lasso variable selection and the specification of the shrinkage parameter. Stat. Comput. 2012, 1-30. 10.1007/s11222-012-9316-x.
    • (2012) Stat. Comput. , pp. 1-30
    • Lykou, A.1    Ntzoufras, I.2
  • 33
    • 0001153986 scopus 로고
    • Simulation of truncated normal variables
    • Robert C.P. Simulation of truncated normal variables. Stat. Comput. 1995, 5:121-125. 10.1007/BF00143942.
    • (1995) Stat. Comput. , vol.5 , pp. 121-125
    • Robert, C.P.1
  • 36
    • 0031285157 scopus 로고    scopus 로고
    • Weak convergence and optimal scaling of random walk Metropolis algorithms
    • Roberts G.O., Gelman A., Gilks W.R. Weak convergence and optimal scaling of random walk Metropolis algorithms. Ann. Appl. Probab. 1997, 7:110-120.
    • (1997) Ann. Appl. Probab. , vol.7 , pp. 110-120
    • Roberts, G.O.1    Gelman, A.2    Gilks, W.R.3
  • 37
    • 57849088168 scopus 로고    scopus 로고
    • A tutorial on adaptive MCMC
    • Andrieu C., Thoms J. A tutorial on adaptive MCMC. Stat. Comput. 2008, 18(4):343-373.
    • (2008) Stat. Comput. , vol.18 , Issue.4 , pp. 343-373
    • Andrieu, C.1    Thoms, J.2
  • 38
    • 0038969859 scopus 로고
    • Conditional expectation and unbiased sequential estimation
    • Blackwell D. Conditional expectation and unbiased sequential estimation. Ann. Math. Stat. 1947, 105-110.
    • (1947) Ann. Math. Stat. , pp. 105-110
    • Blackwell, D.1
  • 39
    • 84915555681 scopus 로고
    • Multivariable curve interpolation
    • Ferguson J. Multivariable curve interpolation. J. ACM 1964, 11(2):221-228.
    • (1964) J. ACM , vol.11 , Issue.2 , pp. 221-228
    • Ferguson, J.1
  • 40
    • 4444261469 scopus 로고    scopus 로고
    • Interpolation and Approximation by Polynomials
    • Springer
    • Phillips G.M. Interpolation and Approximation by Polynomials. CMS Books Math. 2003, vol. 14. Springer.
    • (2003) CMS Books Math. , vol.14
    • Phillips, G.M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.