-
1
-
-
0001308382
-
Some basic hypergeometric polynomials that generalize Jacobi polynomials
-
AMS, Providence, RI
-
R. ASKEY AND J. WILSON, Some Basic Hypergeometric Polynomials that Generalize Jacobi Polynomials, Mem. Amer. Math. Soc. 319, AMS, Providence, RI, 1985.
-
(1985)
Mem. Amer. Math. Soc.
, vol.319
-
-
Askey, R.1
Wilson, J.2
-
3
-
-
0000148817
-
The orthogonal development of nonlinear functionals in series of Fourier-Hermite functionals
-
R. CAMERON AND W. MARTIN, The orthogonal development of nonlinear functionals in series of Fourier-Hermite functionals, Ann. of Math. (2), 48 (1947), pp. 385-392.
-
(1947)
Ann. of Math. (2)
, vol.48
, pp. 385-392
-
-
Cameron, R.1
Martin, W.2
-
5
-
-
0012879398
-
The multiple stochastic integral
-
AMS, Providence, RI
-
D. ENGEL, The Multiple Stochastic Integral, Mem. Amer. Math. Soc. 265, AMS, Providence, RI, 1982.
-
(1982)
Mem. Amer. Math. Soc.
, vol.265
-
-
Engel, D.1
-
6
-
-
0003489634
-
-
Springer-Verlag, New York
-
G. FISHMAN, Monte Carlo: Concepts, Algorithms, and Applications, Springer-Verlag, New York, 1996.
-
(1996)
Monte Carlo: Concepts, Algorithms, and Applications
-
-
Fishman, G.1
-
7
-
-
0033528038
-
Ingredients for a general purpose stochastic finite element formulation
-
R. GHANEM, Ingredients for a general purpose stochastic finite element formulation, Comput. Methods Appl. Mech. Engrg., 168 (1999), pp. 19-34.
-
(1999)
Comput. Methods Appl. Mech. Engrg.
, vol.168
, pp. 19-34
-
-
Ghanem, R.1
-
8
-
-
0033008165
-
Stochastic finite elements for heterogeneous media with multiple random non-Gaussian properties
-
R. GHANEM, Stochastic finite elements for heterogeneous media with multiple random non-Gaussian properties, ASCE J. Eng. Mech., 125 (1999), pp. 26-40.
-
(1999)
ASCE J. Eng. Mech.
, vol.125
, pp. 26-40
-
-
Ghanem, R.1
-
11
-
-
84972503912
-
Multiple Wiener integral
-
K. ITO, Multiple Wiener integral, J. Math. Soc. Japan, 3 (1951), pp. 157-169.
-
(1951)
J. Math. Soc. Japan
, vol.3
, pp. 157-169
-
-
Ito, K.1
-
12
-
-
0000036102
-
The differential equations of birth-and-death processes, and the Stieltjes moment problem
-
S. KARLIN AND J. McGREGOR, The differential equations of birth-and-death processes, and the Stieltjes moment problem, Trans. Amer. Math. Soc., 85 (1957), pp. 489-546.
-
(1957)
Trans. Amer. Math. Soc.
, vol.85
, pp. 489-546
-
-
Karlin, S.1
McGregor, J.2
-
14
-
-
0003884388
-
-
Tech. report 98-17, Department of Technical Mathematics and Informatics, Delft University of Technology, Delft, The Netherlands
-
R. KOEKOEK AND R. SWARTTOUW, The Askey-Scheme of Hypergeometric Orthogonal Polynomials and Its q-Analogue, Tech. report 98-17, Department of Technical Mathematics and Informatics, Delft University of Technology, Delft, The Netherlands, 1998.
-
(1998)
The Askey-Scheme of Hypergeometric Orthogonal Polynomials and Its q-Analogue
-
-
Koekoek, R.1
Swarttouw, R.2
-
15
-
-
0012823783
-
Spectral representations of uncertainty in simulations: Algorithms and applications
-
Uppsala, Sweden
-
D. LUCOR, D. XIU, AND G. KARNIADAKIS, Spectral representations of uncertainty in simulations: Algorithms and applications, in Proceedings of the International Conference on Spectral and High Order Methods (ICOSAHOM-01), Uppsala, Sweden, 2001.
-
(2001)
Proceedings of the International Conference on Spectral and High Order Methods (ICOSAHOM-01)
-
-
Lucor, D.1
Xiu, D.2
Karniadakis, G.3
-
16
-
-
84918385534
-
Orthogonal functional of the Poisson process
-
H. OGURA, Orthogonal functional of the Poisson process, IEEE Trans. Inform. Theory, 18 (1972), pp. 473-481.
-
(1972)
IEEE Trans. Inform. Theory
, vol.18
, pp. 473-481
-
-
Ogura, H.1
-
18
-
-
0004073954
-
-
American Mathematical Society, Providence, RI
-
G. SZEGÖ, Orthogonal Polynomials, American Mathematical Society, Providence, RI, 1939.
-
(1939)
Orthogonal Polynomials
-
-
Szegö, G.1
-
19
-
-
0000786435
-
The homogeneous chaos
-
N. WIENER, The homogeneous chaos, Amer. J. Math., 60 (1938), pp. 897-936.
-
(1938)
Amer. J. Math.
, vol.60
, pp. 897-936
-
-
Wiener, N.1
-
20
-
-
84949588789
-
Modeling uncertainty in flow simulations via generalized polynomial chaos
-
to appear
-
D. XIU AND G. KARNIADAKIS, Modeling uncertainty in flow simulations via generalized polynomial chaos, J. Comput. Phys., to appear.
-
J. Comput. Phys.
-
-
Xiu, D.1
Karniadakis, G.2
|