메뉴 건너뛰기




Volumn , Issue , 2004, Pages 479-485

Predicting prostate cancer recurrence via maximizing the concordance index

Author keywords

Concordance index; Neural networks; Nomogram; Prostate cancer recurrence; Survival analysis

Indexed keywords

DIAGNOSIS; ERROR ANALYSIS; LEARNING ALGORITHMS; LEARNING SYSTEMS; MATHEMATICAL MODELS; PATIENT MONITORING; PROBABILITY; TUMORS;

EID: 12244272666     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/1014052.1014106     Document Type: Conference Paper
Times cited : (22)

References (20)
  • 1
    • 0031921607 scopus 로고    scopus 로고
    • Feed forward neural networks for the analysis of censored survival data: A partial logistic regression approach
    • E. Biganzoli, P. Boracchi, L. Mariani, and et al. Feed forward neural networks for the analysis of censored survival data: a partial logistic regression approach. Stat Med, 1998.
    • (1998) Stat Med
    • Biganzoli, E.1    Boracchi, P.2    Mariani, L.3
  • 2
    • 0031233464 scopus 로고    scopus 로고
    • On the use of artificial neural networks for the analysis of survival data
    • S. F. Brown, A. J. Branford, and W. Moran. On the use of artificial neural networks for the analysis of survival data. IEEE Trans. on Neural Networks, 8(5):1071-1077, 1997.
    • (1997) IEEE Trans. on Neural Networks , vol.8 , Issue.5 , pp. 1071-1077
    • Brown, S.F.1    Branford, A.J.2    Moran, W.3
  • 3
    • 0031047117 scopus 로고    scopus 로고
    • Artificial neural networks improve the accuracy of cancer survival prediction
    • H. B. Burke, P. H. Goodman, D. B. Rosen, and et al. Artificial neural networks improve the accuracy of cancer survival prediction. Cancer, 97(4):857-862, 1997.
    • (1997) Cancer , vol.97 , Issue.4 , pp. 857-862
    • Burke, H.B.1    Goodman, P.H.2    Rosen, D.B.3
  • 6
    • 0037083428 scopus 로고    scopus 로고
    • Validation study of the accuracy of a postoperative nomogram for recurrence after radical prostatectomy for localized prostate cancer
    • M. Graefen, P. I. Karakiewicz, I. Cagiannos, and et al. Validation study of the accuracy of a postoperative nomogram for recurrence after radical prostatectomy for localized prostate cancer. Journal of Clin Oncol, 20:951-956, 2002.
    • (2002) Journal of Clin Oncol , vol.20 , pp. 951-956
    • Graefen, M.1    Karakiewicz, P.I.2    Cagiannos, I.3
  • 8
    • 0037426058 scopus 로고    scopus 로고
    • Prostate cancer epidemiology
    • H. Gronberg. Prostate cancer epidemiology. Lancet, 361:859-864, 2003.
    • (2003) Lancet , vol.361 , pp. 859-864
    • Gronberg, H.1
  • 10
    • 84944363874 scopus 로고
    • Evaluating the yield of medical tests
    • F. E. Harrell, R. M. Califf, D. B. Pryor, and et al. Evaluating the yield of medical tests. JAMA, 247(18):2543-2546, 1982.
    • (1982) JAMA , vol.247 , Issue.18 , pp. 2543-2546
    • Harrell, F.E.1    Califf, R.M.2    Pryor, D.B.3
  • 11
    • 0037288767 scopus 로고    scopus 로고
    • Systems biology: Integrating technology, biology, and computation
    • L. Hood. Systems biology: integrating technology, biology, and computation. Mech Ageing Dev, 124:9-16, 2003.
    • (2003) Mech Ageing Dev , vol.124 , pp. 9-16
    • Hood, L.1
  • 13
    • 0031731379 scopus 로고    scopus 로고
    • Experiments to determine whether recursive partitioning or an artificial neural network overcomes theoretical limitation of cox proportional hazards regression
    • M. W. Kattan, K. R. Hess, and J. R. Beck. Experiments to determine whether recursive partitioning or an artificial neural network overcomes theoretical limitation of cox proportional hazards regression. Comput Biomed Res, 31(5):363-373, 1998.
    • (1998) Comput Biomed Res , vol.31 , Issue.5 , pp. 363-373
    • Kattan, M.W.1    Hess, K.R.2    Beck, J.R.3
  • 14
    • 0032950295 scopus 로고    scopus 로고
    • Postoperative nomogram for disease recurrence after radical prostatectomy for prostate cancer
    • M. W. Kattan, T. M. Wheeler, and P. T. Scardino. Postoperative nomogram for disease recurrence after radical prostatectomy for prostate cancer. Journal of Clin Oncol, 17:1499-1507, 1999.
    • (1999) Journal of Clin Oncol , vol.17 , pp. 1499-1507
    • Kattan, M.W.1    Wheeler, T.M.2    Scardino, P.T.3
  • 16
    • 33646887390 scopus 로고
    • On the limited memory bfgs method for large scale optimization
    • D. C. Liu and J. Nocedal. On the limited memory bfgs method for large scale optimization. Mathematical Programming, 45:503-528, 1989.
    • (1989) Mathematical Programming , vol.45 , pp. 503-528
    • Liu, D.C.1    Nocedal, J.2
  • 17
    • 0031513627 scopus 로고    scopus 로고
    • Modular neural networks for medical prognosis: Quantifying the benefits of combining neural networks for survival prediction
    • L. Ohno-Machado and M. A. Musen. Modular neural networks for medical prognosis: Quantifying the benefits of combining neural networks for survival prediction. Connection Science, 9:71-86, 1997.
    • (1997) Connection Science , vol.9 , pp. 71-86
    • Ohno-Machado, L.1    Musen, M.A.2
  • 18
    • 0028148549 scopus 로고    scopus 로고
    • Artificial neural networks in the diagnosis and prognosis of prostate cancer: A pilot study
    • P. Snow, D. S. Smith, and W. J. Catalona. Artificial neural networks in the diagnosis and prognosis of prostate cancer: a pilot study. J. Urology, 152(5):1923-1926, 1997.
    • (1997) J. Urology , vol.152 , Issue.5 , pp. 1923-1926
    • Snow, P.1    Smith, D.S.2    Catalona, W.J.3
  • 19
    • 1942451946 scopus 로고    scopus 로고
    • Optimizing classifier performance via an approximation to the wilcoxon-mann-whitney statistic
    • L. Yan, R. Dodier, M. Mozer, and R. Wolnienwicz. Optimizing classifier performance via an approximation to the wilcoxon-mann-whitney statistic. In Proc. of 20th Int'l Conf. Machine Learning, pages 848-855, 2003.
    • (2003) Proc. of 20th Int'l Conf. Machine Learning , pp. 848-855
    • Yan, L.1    Dodier, R.2    Mozer, M.3    Wolnienwicz, R.4
  • 20
    • 0343081009 scopus 로고    scopus 로고
    • Machine learning for survival analysis: A case study on recurrence of prostate cancer
    • B. Zupan, J. Demsar, M. W. Kattan, and et al. Machine learning for survival analysis: a case study on recurrence of prostate cancer. Artificial Intelligence in Medicine, 20:59-75, 2000.
    • (2000) Artificial Intelligence in Medicine , vol.20 , pp. 59-75
    • Zupan, B.1    Demsar, J.2    Kattan, M.W.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.