-
1
-
-
0031921607
-
Feed forward neural networks for the analysis of censored survival data: A partial logistic regression approach
-
E. Biganzoli, P. Boracchi, L. Mariani, and et al. Feed forward neural networks for the analysis of censored survival data: a partial logistic regression approach. Stat Med, 1998.
-
(1998)
Stat Med
-
-
Biganzoli, E.1
Boracchi, P.2
Mariani, L.3
-
2
-
-
0031233464
-
On the use of artificial neural networks for the analysis of survival data
-
S. F. Brown, A. J. Branford, and W. Moran. On the use of artificial neural networks for the analysis of survival data. IEEE Trans. on Neural Networks, 8(5):1071-1077, 1997.
-
(1997)
IEEE Trans. on Neural Networks
, vol.8
, Issue.5
, pp. 1071-1077
-
-
Brown, S.F.1
Branford, A.J.2
Moran, W.3
-
3
-
-
0031047117
-
Artificial neural networks improve the accuracy of cancer survival prediction
-
H. B. Burke, P. H. Goodman, D. B. Rosen, and et al. Artificial neural networks improve the accuracy of cancer survival prediction. Cancer, 97(4):857-862, 1997.
-
(1997)
Cancer
, vol.97
, Issue.4
, pp. 857-862
-
-
Burke, H.B.1
Goodman, P.H.2
Rosen, D.B.3
-
4
-
-
0037441522
-
Advancing drug discovery through systems biology
-
E. Davidov, J. Holland, E. Marple, and S. Naylor. Advancing drug discovery through systems biology. Drug Discov Today, 8:175-183, 2003.
-
(2003)
Drug Discov Today
, vol.8
, pp. 175-183
-
-
Davidov, E.1
Holland, J.2
Marple, E.3
Naylor, S.4
-
6
-
-
0037083428
-
Validation study of the accuracy of a postoperative nomogram for recurrence after radical prostatectomy for localized prostate cancer
-
M. Graefen, P. I. Karakiewicz, I. Cagiannos, and et al. Validation study of the accuracy of a postoperative nomogram for recurrence after radical prostatectomy for localized prostate cancer. Journal of Clin Oncol, 20:951-956, 2002.
-
(2002)
Journal of Clin Oncol
, vol.20
, pp. 951-956
-
-
Graefen, M.1
Karakiewicz, P.I.2
Cagiannos, I.3
-
8
-
-
0037426058
-
Prostate cancer epidemiology
-
H. Gronberg. Prostate cancer epidemiology. Lancet, 361:859-864, 2003.
-
(2003)
Lancet
, vol.361
, pp. 859-864
-
-
Gronberg, H.1
-
10
-
-
84944363874
-
Evaluating the yield of medical tests
-
F. E. Harrell, R. M. Califf, D. B. Pryor, and et al. Evaluating the yield of medical tests. JAMA, 247(18):2543-2546, 1982.
-
(1982)
JAMA
, vol.247
, Issue.18
, pp. 2543-2546
-
-
Harrell, F.E.1
Califf, R.M.2
Pryor, D.B.3
-
11
-
-
0037288767
-
Systems biology: Integrating technology, biology, and computation
-
L. Hood. Systems biology: integrating technology, biology, and computation. Mech Ageing Dev, 124:9-16, 2003.
-
(2003)
Mech Ageing Dev
, vol.124
, pp. 9-16
-
-
Hood, L.1
-
13
-
-
0031731379
-
Experiments to determine whether recursive partitioning or an artificial neural network overcomes theoretical limitation of cox proportional hazards regression
-
M. W. Kattan, K. R. Hess, and J. R. Beck. Experiments to determine whether recursive partitioning or an artificial neural network overcomes theoretical limitation of cox proportional hazards regression. Comput Biomed Res, 31(5):363-373, 1998.
-
(1998)
Comput Biomed Res
, vol.31
, Issue.5
, pp. 363-373
-
-
Kattan, M.W.1
Hess, K.R.2
Beck, J.R.3
-
14
-
-
0032950295
-
Postoperative nomogram for disease recurrence after radical prostatectomy for prostate cancer
-
M. W. Kattan, T. M. Wheeler, and P. T. Scardino. Postoperative nomogram for disease recurrence after radical prostatectomy for prostate cancer. Journal of Clin Oncol, 17:1499-1507, 1999.
-
(1999)
Journal of Clin Oncol
, vol.17
, pp. 1499-1507
-
-
Kattan, M.W.1
Wheeler, T.M.2
Scardino, P.T.3
-
16
-
-
33646887390
-
On the limited memory bfgs method for large scale optimization
-
D. C. Liu and J. Nocedal. On the limited memory bfgs method for large scale optimization. Mathematical Programming, 45:503-528, 1989.
-
(1989)
Mathematical Programming
, vol.45
, pp. 503-528
-
-
Liu, D.C.1
Nocedal, J.2
-
17
-
-
0031513627
-
Modular neural networks for medical prognosis: Quantifying the benefits of combining neural networks for survival prediction
-
L. Ohno-Machado and M. A. Musen. Modular neural networks for medical prognosis: Quantifying the benefits of combining neural networks for survival prediction. Connection Science, 9:71-86, 1997.
-
(1997)
Connection Science
, vol.9
, pp. 71-86
-
-
Ohno-Machado, L.1
Musen, M.A.2
-
18
-
-
0028148549
-
Artificial neural networks in the diagnosis and prognosis of prostate cancer: A pilot study
-
P. Snow, D. S. Smith, and W. J. Catalona. Artificial neural networks in the diagnosis and prognosis of prostate cancer: a pilot study. J. Urology, 152(5):1923-1926, 1997.
-
(1997)
J. Urology
, vol.152
, Issue.5
, pp. 1923-1926
-
-
Snow, P.1
Smith, D.S.2
Catalona, W.J.3
-
19
-
-
1942451946
-
Optimizing classifier performance via an approximation to the wilcoxon-mann-whitney statistic
-
L. Yan, R. Dodier, M. Mozer, and R. Wolnienwicz. Optimizing classifier performance via an approximation to the wilcoxon-mann-whitney statistic. In Proc. of 20th Int'l Conf. Machine Learning, pages 848-855, 2003.
-
(2003)
Proc. of 20th Int'l Conf. Machine Learning
, pp. 848-855
-
-
Yan, L.1
Dodier, R.2
Mozer, M.3
Wolnienwicz, R.4
-
20
-
-
0343081009
-
Machine learning for survival analysis: A case study on recurrence of prostate cancer
-
B. Zupan, J. Demsar, M. W. Kattan, and et al. Machine learning for survival analysis: a case study on recurrence of prostate cancer. Artificial Intelligence in Medicine, 20:59-75, 2000.
-
(2000)
Artificial Intelligence in Medicine
, vol.20
, pp. 59-75
-
-
Zupan, B.1
Demsar, J.2
Kattan, M.W.3
|