메뉴 건너뛰기




Volumn 15, Issue 5, 2013, Pages 32-40

Climate informatics: Accelerating discovering in climate science with machine learning

Author keywords

climate informatics; climate science; data mining; machine learning; statistics

Indexed keywords

CLIMATE DATA; CLIMATE SCIENCE; CLIMATE SCIENTISTS; CLIMATE SYSTEM; INFORMATICS;

EID: 84890084020     PISSN: 15219615     EISSN: None     Source Type: Journal    
DOI: 10.1109/MCSE.2013.50     Document Type: Article
Times cited : (40)

References (22)
  • 4
    • 33644680703 scopus 로고    scopus 로고
    • Present day atmospheric simulations using GISS ModelE: Comparison to in-situ, satellite and reanalysis data
    • G.A. Schmidt et al., "Present Day Atmospheric Simulations Using GISS ModelE: Comparison to In- Situ, Satellite and Reanalysis Data," J. Climate, 2006, vol. 19, no. 2, pp. 153-192.
    • (2006) J. Climate , vol.19 , Issue.2 , pp. 153-192
    • Schmidt, G.A.1
  • 6
    • 43449087894 scopus 로고    scopus 로고
    • How well do coupled models simulate today's climate?
    • DOI 10.1175/BAMS-89-3-303
    • T. Reichler and J. Kim, "How Well Do Coupled Models Simulate Today's Climate?," Bull. Am. Meteorological Soc., vol. 89, no. 3, 2008, pp. 303-311; http://dx.doi.org/10.1175/BAMS-89-3-303. (Pubitemid 351756665)
    • (2008) Bulletin of the American Meteorological Society , vol.89 , Issue.3 , pp. 303-311
    • Reichler, T.1    Kim, J.2
  • 7
    • 70349249491 scopus 로고    scopus 로고
    • Climate projections: Past performance no guarantee of future skill?
    • doi:10.1029/2009GL038082
    • C. Reifen and R. Toumi. "Climate Projections: Past Performance No Guarantee of Future Skill?" Geophysical Research Letters, vol. 36, no. 13, 2009; doi:10.1029/2009GL038082.
    • (2009) Geophysical Research Letters , vol.36 , Issue.13
    • Reifen, C.1    Toumi, R.2
  • 12
    • 0032137328 scopus 로고    scopus 로고
    • Tracking the best expert
    • DOI 10.1023/A:1007424614876
    • M. Herbster and M.K. Warmuth, "Tracking the Best Expert," Machine Learning, vol. 32, no. 2, 1998, pp.151-178. (Pubitemid 40626079)
    • (1998) Machine Learning , vol.32 , Issue.2 , pp. 151-178
    • Herbster, M.1    Warmuth, M.K.2
  • 14
    • 34547177691 scopus 로고    scopus 로고
    • The use of the multi- model ensemble in probabilistic climate projections in probabilistic climate projections
    • C. Tebaldi and R. Knutti, "The Use of the Multi- Model Ensemble in Probabilistic Climate Projections in Probabilistic Climate Projections," Philosophical Transactions of the Royal Soc. A, vol. 365, no. 1857, 2007, pp. 2053-2075.
    • (2007) Philosophical Transactions of the Royal Soc. A , vol.365 , Issue.1857 , pp. 2053-2075
    • Tebaldi, C.1    Knutti, R.2
  • 15
    • 33645994778 scopus 로고    scopus 로고
    • Complex hybrid models combining deterministic and machine learning components for numerical climate modeling and weather prediction
    • doi:10.1016/j.neunet.2006.01.002
    • V.M. Krasnopolsky and M.S. Fox-Rabinovitz, "Complex Hybrid Models Combining Deterministic and Machine Learning Components for Numerical Climate Modeling and Weather Prediction," Neural Networks, vol. 19, no. 2, 2006, pp. 122-134; doi:10.1016/j.neunet.2006.01.002.
    • (2006) Neural Networks , vol.19 , Issue.2 , pp. 122-134
    • Krasnopolsky, V.M.1    Fox-Rabinovitz, M.S.2
  • 16
    • 34547627832 scopus 로고    scopus 로고
    • Water isotope expressions of intrinsic and forced variability in a coupled ocean-atmosphere model
    • DOI 10.1029/2006JD007781
    • G.A. Schmidt, A. LeGrande, and G. Hoffmann, "Water Isotope Expressions of Intrinsic and Forced Variability in a Coupled Ocean-Atmosphere Model," J. Geophysical Research, vol. 112, no. D10, 2007; doi:10.1029/2006JD007781. (Pubitemid 47201688)
    • (2007) Journal of Geophysical Research D: Atmospheres , vol.112 , Issue.10
    • Schmidt, G.A.1    LeGrande, A.N.2    Hoffmann, G.3
  • 17
    • 0028193070 scopus 로고
    • Sequential data assimilation with a nonlinear quasi-geostrophic model using monte carlo methods to forecast error statistics
    • G. Evensen, "Sequential Data Assimilation with a Nonlinear Quasi-Geostrophic Model Using Monte Carlo Methods to Forecast Error Statistics," J. Geophysical Research-All Series, vol. 99, no. C5, 1994, pp. 10143-10162.
    • (1994) J. Geophysical Research-All Series , vol.99 , Issue.C5 , pp. 10143-10162
    • Evensen, G.1
  • 18
    • 43049138035 scopus 로고    scopus 로고
    • Advancing decadal-scale climate prediction in the North Atlantic sector
    • DOI 10.1038/nature06921, PII NATURE06921
    • N.S. Keenlyside et al., "Advancing Decadal-Scale Climate Prediction in the North Atlantic Sector," Nature, vol. 453, no. 7191, 2008, pp. 84-88. (Pubitemid 351630335)
    • (2008) Nature , vol.453 , Issue.7191 , pp. 84-88
    • Keenlyside, N.S.1    Latif, M.2    Jungclaus, J.3    Kornblueh, L.4    Roeckner, E.5
  • 19
    • 34547903564 scopus 로고    scopus 로고
    • Improved surface temperature prediction for the coming decade from a global climate model
    • D.M. Smith et al., "Improved Surface Temperature Prediction for the Coming Decade from a Global Climate Model," Science, vol. 317, no. 5839, 2007, pp. 769-799.
    • (2007) Science , vol.317 , Issue.5839 , pp. 769-799
    • Smith, D.M.1
  • 20
    • 34547423919 scopus 로고    scopus 로고
    • Global climate projections
    • S. Solomon et al., eds., Cambridge Univ. Press
    • G.A. Meehl et al., "Global Climate Projections," Climate Change 2007: The Physical Science Basis, tech. report, S. Solomon et al., eds., Cambridge Univ. Press, 2007; www.ipcc.ch/publications-and-data/ar4/wg1/en/ch10. html.
    • (2007) Climate Change 2007: The Physical Science Basis, Tech. Report
    • Meehl, G.A.1
  • 21
    • 33645822120 scopus 로고    scopus 로고
    • Constraining climate sensitivity from the seasonal cycle in surface temperature
    • R. Knutti et al., "Constraining Climate Sensitivity from the Seasonal Cycle in Surface Temperature," J. Climate, vol. 19, no. 17, 2007, pp. 4224-4233.
    • (2007) J. Climate , vol.19 , Issue.17 , pp. 4224-4233
    • Knutti, R.1
  • 22
    • 34547191081 scopus 로고    scopus 로고
    • A methodology for probabilistic predictions of regional climate change from perturbed physics ensembles
    • J.M. Murphy et al., "A Methodology for Probabilistic Predictions of Regional Climate Change from Perturbed Physics Ensembles," Philosophical Trans. Royal Soc. A, vol. 365, no. 1857, 2007, pp. 1993-2028.
    • (2007) Philosophical Trans. Royal Soc. A , vol.365 , Issue.1857 , pp. 1993-2028
    • Murphy, J.M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.