메뉴 건너뛰기




Volumn , Issue , 2013, Pages 1147-1156

Scientific articles recommendation

Author keywords

Matrix factorization; Probabilistic topic modeling; Recommender system

Indexed keywords

ACCURATE PREDICTION; BASIC HYPOTHESIS; MATRIX FACTORIZATIONS; ON-LINE COMMUNITIES; PROBABILISTIC TOPIC MODELS; REGRESSION MATRICES; REGRESSION MODEL; SCIENTIFIC ARTICLES;

EID: 84889559998     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/2505515.2505705     Document Type: Conference Paper
Times cited : (35)

References (31)
  • 1
    • 70350664430 scopus 로고    scopus 로고
    • Regression-based latent factor models
    • D. Agarwal and B.-C. Chen. Regression-based latent factor models. In KDD, pages 19-28, 2009.
    • (2009) KDD , pp. 19-28
    • Agarwal, D.1    Chen, B.-C.2
  • 2
    • 77950940282 scopus 로고    scopus 로고
    • Flda: Matrix factorization through latent dirichlet allocation
    • D. Agarwal and B.-C. Chen. flda: matrix factorization through latent dirichlet allocation. In WSDM, pages 91-100, 2010.
    • (2010) WSDM , pp. 91-100
    • Agarwal, D.1    Chen, B.-C.2
  • 5
    • 49749086487 scopus 로고    scopus 로고
    • Scalable collaborative filtering with jointly derived neighborhood interpolation weights
    • R. M. Bell and Y. Koren. Scalable collaborative filtering with jointly derived neighborhood interpolation weights. In ICDM, pages 43-52, 2007.
    • (2007) ICDM , pp. 43-52
    • Bell, R.M.1    Koren, Y.2
  • 6
    • 36849079891 scopus 로고    scopus 로고
    • Modeling relationships at multiple scales to improve accuracy of large recommender systems
    • R. M. Bell, Y. Koren, and C. Volinsky. Modeling relationships at multiple scales to improve accuracy of large recommender systems. In KDD, pages 95-104, 2007.
    • (2007) KDD , pp. 95-104
    • Bell, R.M.1    Koren, Y.2    Volinsky, C.3
  • 7
  • 10
    • 70349247055 scopus 로고    scopus 로고
    • Modeling hidden topics on document manifold
    • D. Cai, Q. Mei, J. Han, and C. Zhai. Modeling hidden topics on document manifold. In CIKM, pages 911-920, 2008.
    • (2008) CIKM , pp. 911-920
    • Cai, D.1    Mei, Q.2    Han, J.3    Zhai, C.4
  • 11
    • 0002629270 scopus 로고
    • Maximum likelihood from incomplete data via the em algorithm
    • Series B
    • A. P. Dempster, N. Laird, and D. Rubin. Maximum likelihood from incomplete data via the em algorithm. Journal of the Royal Statistical Society, Series B, 39(1):1-38, 1977.
    • (1977) Journal of the Royal Statistical Society , vol.39 , Issue.1 , pp. 1-38
    • Dempster, A.P.1    Laird, N.2    Rubin, D.3
  • 12
    • 80052687461 scopus 로고    scopus 로고
    • Cost-aware travel tour recommendation
    • Y. Ge, Q. Liu, H. Xiong, A. Tuzhilin, and J. Chen. Cost-aware travel tour recommendation. In KDD, pages 983-991, 2011.
    • (2011) KDD , pp. 983-991
    • Ge, Y.1    Liu, Q.2    Xiong, H.3    Tuzhilin, A.4    Chen, J.5
  • 13
    • 85026972772 scopus 로고    scopus 로고
    • Probabilistic latent semantic indexing
    • T. Hofmann. Probabilistic latent semantic indexing. In SIGIR, pages 50-57, 1999.
    • (1999) SIGIR , pp. 50-57
    • Hofmann, T.1
  • 14
    • 67049164166 scopus 로고    scopus 로고
    • Collaborative filtering for implicit feedback datasets
    • Y. Hu, Y. Koren, and C. Volinsky. Collaborative filtering for implicit feedback datasets. In ICDM, pages 263-272, 2008.
    • (2008) ICDM , pp. 263-272
    • Hu, Y.1    Koren, Y.2    Volinsky, C.3
  • 16
    • 32344441911 scopus 로고    scopus 로고
    • A maximum entropy web recommendation system: Combining collaborative and content features
    • X. Jin, Y. Zhou, and B. Mobasher. A maximum entropy web recommendation system: combining collaborative and content features. In KDD, pages 612-617, 2005.
    • (2005) KDD , pp. 612-617
    • Jin, X.1    Zhou, Y.2    Mobasher, B.3
  • 17
    • 65449121157 scopus 로고    scopus 로고
    • Factorization meets the neighborhood: A multifaceted collaborative filtering model
    • Y. Koren. Factorization meets the neighborhood: a multifaceted collaborative filtering model. In KDD, pages 426-434, 2008.
    • (2008) KDD , pp. 426-434
    • Koren, Y.1
  • 18
    • 85008044987 scopus 로고    scopus 로고
    • Matrix factorization techniques for recommender systems
    • Y. Koren, R. M. Bell, and C. Volinsky. Matrix factorization techniques for recommender systems. IEEE Computer, 42(8):30-37, 2009.
    • (2009) IEEE Computer , vol.42 , Issue.8 , pp. 30-37
    • Koren, Y.1    Bell, R.M.2    Volinsky, C.3
  • 19
    • 0036932094 scopus 로고    scopus 로고
    • Content-boosted collaborative filtering for improved recommendations
    • P. Melville, R. J. Mooney, and R. Nagarajan. Content-boosted collaborative filtering for improved recommendations. In AAAI/IAAI, pages 187-192, 2002.
    • (2002) AAAI/IAAI , pp. 187-192
    • Melville, P.1    Mooney, R.J.2    Nagarajan, R.3
  • 21
    • 84867125398 scopus 로고    scopus 로고
    • Collaborative topic regression with social matrix factorization for recommendation systems
    • S. Purushotham and Y. Liu. Collaborative topic regression with social matrix factorization for recommendation systems. In ICML, 2012.
    • (2012) ICML
    • Purushotham, S.1    Liu, Y.2
  • 22
    • 48349135120 scopus 로고    scopus 로고
    • Probabilistic matrix factorization
    • R. Salakhutdinov and A. Mnih. Probabilistic matrix factorization. In NIPS, 2007.
    • (2007) NIPS
    • Salakhutdinov, R.1    Mnih, A.2
  • 23
    • 56449131205 scopus 로고    scopus 로고
    • Bayesian probabilistic matrix factorization using Markov chain Monte Carlo
    • R. Salakhutdinov and A. Mnih. Bayesian probabilistic matrix factorization using markov chain monte carlo. In ICML, pages 880-887, 2008.
    • (2008) ICML , pp. 880-887
    • Salakhutdinov, R.1    Mnih, A.2
  • 24
    • 79951750366 scopus 로고    scopus 로고
    • Generalized probabilistic matrix factorizations for collaborative filtering
    • H. Shan and A. Banerjee. Generalized probabilistic matrix factorizations for collaborative filtering. In ICDM, pages 1025-1030, 2010.
    • (2010) ICDM , pp. 1025-1030
    • Shan, H.1    Banerjee, A.2
  • 25
    • 18744367839 scopus 로고    scopus 로고
    • Unified filtering by combining collaborative filtering and content-based filtering via mixture model and exponential model
    • L. Si and R. Jin. Unified filtering by combining collaborative filtering and content-based filtering via mixture model and exponential model. In CIKM, pages 156-157, 2004.
    • (2004) CIKM , pp. 156-157
    • Si, L.1    Jin, R.2
  • 26
    • 1942516801 scopus 로고    scopus 로고
    • Weighted low-rank approximations
    • N. Srebro and T. Jaakkola. Weighted low-rank approximations. In ICML, pages 720-727, 2003.
    • (2003) ICML , pp. 720-727
    • Srebro, N.1    Jaakkola, T.2
  • 28
    • 80052666619 scopus 로고    scopus 로고
    • Collaborative topic modeling for recommending scientific articles
    • C. Wang and D. M. Blei. Collaborative topic modeling for recommending scientific articles. In KDD, pages 448-456, 2011.
    • (2011) KDD , pp. 448-456
    • Wang, C.1    Blei, D.M.2
  • 29
    • 70450178502 scopus 로고    scopus 로고
    • Simultaneous image classification and annotation
    • C. Wang, D. M. Blei, and F.-F. Li. Simultaneous image classification and annotation. In CVPR, pages 1903-1910, 2009.
    • (2009) CVPR , pp. 1903-1910
    • Wang, C.1    Blei, D.M.2    Li, F.-F.3
  • 31
    • 2342586046 scopus 로고    scopus 로고
    • Collaborative ensemble learning: Combining collaborative and content-based information filtering via hierarchical bayes
    • K. Yu, A. Schwaighofer, V. Tresp, W.-Y. Ma, and H. Zhang. Collaborative ensemble learning: Combining collaborative and content-based information filtering via hierarchical bayes. In UAI, pages 616-623, 2003.
    • (2003) UAI , pp. 616-623
    • Yu, K.1    Schwaighofer, A.2    Tresp, V.3    Ma, W.-Y.4    Zhang, H.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.