-
3
-
-
84880203756
-
Laplacian eigenmaps and spectral techniques for embedding and clustering
-
M. Belkin and P. Niyogi. Laplacian eigenmaps and spectral techniques for embedding and clustering. In NIPS 14, 2001.
-
(2001)
NIPS 14
-
-
Belkin, M.1
Niyogi, P.2
-
4
-
-
33750729556
-
Manifold regularization: A geometric framework for learning from examples
-
M. Belkin, P. Niyogi, and V. Sindhwani. Manifold regularization: A geometric framework for learning from examples. Journal of Machine Learning Research, 7:2399-2434, 2006.
-
(2006)
Journal of Machine Learning Research
, vol.7
, pp. 2399-2434
-
-
Belkin, M.1
Niyogi, P.2
Sindhwani, V.3
-
6
-
-
30344483178
-
Document clustering using locality preserving indexing
-
December
-
D. Cai, X. He, and J. Han. Document clustering using locality preserving indexing. IEEE Transactions on Knowledge and Data Engineering, 17(12):1624-1637, December 2005.
-
(2005)
IEEE Transactions on Knowledge and Data Engineering
, vol.17
, Issue.12
, pp. 1624-1637
-
-
Cai, D.1
He, X.2
Han, J.3
-
8
-
-
84989525001
-
Indexing by latent semantic analysis
-
S. C. Deerwester, S. T. Dumais, T. K. Landauer, G. W. Furnas, and R. A. harshman. Indexing by latent semantic analysis. Journal of the American Society of Information Science, 41(6):391-407, 1990.
-
(1990)
Journal of the American Society of Information Science
, vol.41
, Issue.6
, pp. 391-407
-
-
Deerwester, S.C.1
Dumais, S.T.2
Landauer, T.K.3
Furnas, G.W.4
harshman, R.A.5
-
9
-
-
0002629270
-
Maximum likelihood from incomplete data via the em algorithm
-
A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete data via the em algorithm. Journal of the Royal Statistical Society. Series B (Methodological), 39(1):1-38, 1977.
-
(1977)
Journal of the Royal Statistical Society. Series B (Methodological)
, vol.39
, Issue.1
, pp. 1-38
-
-
Dempster, A.P.1
Laird, N.M.2
Rubin, D.B.3
-
10
-
-
8644230223
-
Locality preserving indexing for document representation
-
Sheffield, UK, July
-
X. He, D. Cai, H. Liu, and W.-Y. Ma. Locality preserving indexing for document representation. In Proc. 2004 Int. Conf. on Research and Development in Information Retrieval (SIGIR'04), pages 96-103, Sheffield, UK, July 2004.
-
(2004)
Proc. 2004 Int. Conf. on Research and Development in Information Retrieval (SIGIR'04)
, pp. 96-103
-
-
He, X.1
Cai, D.2
Liu, H.3
Ma, W.-Y.4
-
12
-
-
0034818212
-
Unsupervised learning by probabilistic latent semantic analysis
-
T. Hofmann. Unsupervised learning by probabilistic latent semantic analysis. Machine Learning, 42(1-2):177-196, 2001.
-
(2001)
Machine Learning
, vol.42
, Issue.1-2
, pp. 177-196
-
-
Hofmann, T.1
-
13
-
-
0038363049
-
-
Akadémiai Kiadó, North Holland, Budapest
-
L. Lovasz and M. Plummer. Matching Theory. Akadémiai Kiadó, North Holland, Budapest, 1986.
-
(1986)
Matching Theory
-
-
Lovasz, L.1
Plummer, M.2
-
14
-
-
0002788893
-
A view of the EM algorithm that justifies incremental, sparse, and other variants
-
Kluwer
-
R. Neal and G. Hinton. A view of the EM algorithm that justifies incremental, sparse, and other variants. In Learning in Graphical Models. Kluwer, 1998.
-
(1998)
Learning in Graphical Models
-
-
Neal, R.1
Hinton, G.2
-
15
-
-
84899013108
-
On spectral clustering: Analysis and an algorithm
-
MIT Press, Cambridge, MA
-
A. Y. Ng, M. Jordan, and Y. Weiss. On spectral clustering: Analysis and an algorithm. In Advances in Neural Information Processing Systems 14, pages 849-856. MIT Press, Cambridge, MA, 2001.
-
(2001)
Advances in Neural Information Processing Systems 14
, pp. 849-856
-
-
Ng, A.Y.1
Jordan, M.2
Weiss, Y.3
-
16
-
-
0012253296
-
Probabilistic models for unified collaborative and content-based recommendation in sparse-data environments
-
A. Popescul, L. Ungar, D. Pennock, and S. Lawrence. Probabilistic models for unified collaborative and content-based recommendation in sparse-data environments. In 17th Conference on Uncertainty in Artificial Intelligence, pages 437-444, 2001.
-
(2001)
17th Conference on Uncertainty in Artificial Intelligence
, pp. 437-444
-
-
Popescul, A.1
Ungar, L.2
Pennock, D.3
Lawrence, S.4
-
22
-
-
0013246766
-
Spectral relaxation for k-means clustering
-
MIT Press, Cambridge, MA
-
H. Zha, C. Ding, M. Gu, X. He, , and H. Simon. Spectral relaxation for k-means clustering. In Advances in Neural Information Processing Systems 14, pages 1057-1064. MIT Press, Cambridge, MA, 2001.
-
(2001)
Advances in Neural Information Processing Systems 14
, pp. 1057-1064
-
-
Zha, H.1
Ding, C.2
Gu, M.3
He, X.4
Simon, H.5
-
24
-
-
31844438481
-
Harmonic mixtures: Combining mixture models and graph-based methods for inductive and scalable semi-supervised learning
-
X. Zhu and J. Lafferty. Harmonic mixtures: combining mixture models and graph-based methods for inductive and scalable semi-supervised learning. In ICML '05: Proceedings of the 22nd international conference on Machine learning, pages 1052-1059, 2005.
-
(2005)
ICML '05: Proceedings of the 22nd international conference on Machine learning
, pp. 1052-1059
-
-
Zhu, X.1
Lafferty, J.2
|