메뉴 건너뛰기




Volumn , Issue , 2008, Pages 911-920

Modeling hidden topics on document manifold

Author keywords

Document representation; Generative model; Manifold regularization; Probabilistic latent semantic indexing

Indexed keywords

DOCUMENT ANALYSIS; DOCUMENT REPRESENTATION; EUCLIDEAN; EUCLIDEAN SPACES; GENERATIVE MODEL; JOINT PROBABILITY; KEY PROBLEMS; LAPLACIANS; LATENT DIRICHLET ALLOCATIONS; MANIFOLD REGULARIZATION; NOVEL ALGORITHM; OVERFITTING; PROBABILISTIC LATENT SEMANTIC INDEXING; SEMANTIC STRUCTURES; TEXT DATA;

EID: 70349247055     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/1458082.1458202     Document Type: Conference Paper
Times cited : (150)

References (24)
  • 3
    • 84880203756 scopus 로고    scopus 로고
    • Laplacian eigenmaps and spectral techniques for embedding and clustering
    • M. Belkin and P. Niyogi. Laplacian eigenmaps and spectral techniques for embedding and clustering. In NIPS 14, 2001.
    • (2001) NIPS 14
    • Belkin, M.1    Niyogi, P.2
  • 4
    • 33750729556 scopus 로고    scopus 로고
    • Manifold regularization: A geometric framework for learning from examples
    • M. Belkin, P. Niyogi, and V. Sindhwani. Manifold regularization: A geometric framework for learning from examples. Journal of Machine Learning Research, 7:2399-2434, 2006.
    • (2006) Journal of Machine Learning Research , vol.7 , pp. 2399-2434
    • Belkin, M.1    Niyogi, P.2    Sindhwani, V.3
  • 6
    • 30344483178 scopus 로고    scopus 로고
    • Document clustering using locality preserving indexing
    • December
    • D. Cai, X. He, and J. Han. Document clustering using locality preserving indexing. IEEE Transactions on Knowledge and Data Engineering, 17(12):1624-1637, December 2005.
    • (2005) IEEE Transactions on Knowledge and Data Engineering , vol.17 , Issue.12 , pp. 1624-1637
    • Cai, D.1    He, X.2    Han, J.3
  • 12
    • 0034818212 scopus 로고    scopus 로고
    • Unsupervised learning by probabilistic latent semantic analysis
    • T. Hofmann. Unsupervised learning by probabilistic latent semantic analysis. Machine Learning, 42(1-2):177-196, 2001.
    • (2001) Machine Learning , vol.42 , Issue.1-2 , pp. 177-196
    • Hofmann, T.1
  • 13
    • 0038363049 scopus 로고
    • Akadémiai Kiadó, North Holland, Budapest
    • L. Lovasz and M. Plummer. Matching Theory. Akadémiai Kiadó, North Holland, Budapest, 1986.
    • (1986) Matching Theory
    • Lovasz, L.1    Plummer, M.2
  • 14
    • 0002788893 scopus 로고    scopus 로고
    • A view of the EM algorithm that justifies incremental, sparse, and other variants
    • Kluwer
    • R. Neal and G. Hinton. A view of the EM algorithm that justifies incremental, sparse, and other variants. In Learning in Graphical Models. Kluwer, 1998.
    • (1998) Learning in Graphical Models
    • Neal, R.1    Hinton, G.2
  • 24
    • 31844438481 scopus 로고    scopus 로고
    • Harmonic mixtures: Combining mixture models and graph-based methods for inductive and scalable semi-supervised learning
    • X. Zhu and J. Lafferty. Harmonic mixtures: combining mixture models and graph-based methods for inductive and scalable semi-supervised learning. In ICML '05: Proceedings of the 22nd international conference on Machine learning, pages 1052-1059, 2005.
    • (2005) ICML '05: Proceedings of the 22nd international conference on Machine learning , pp. 1052-1059
    • Zhu, X.1    Lafferty, J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.