메뉴 건너뛰기




Volumn 71, Issue , 2014, Pages 138-150

A multivariate linear regression analysis using finite mixtures of t distributions

Author keywords

EM algorithm; Maximum likelihood; Model identifiability; Non normal error distribution; Unobserved heterogeneity

Indexed keywords

EM ALGORITHMS; ERROR DISTRIBUTIONS; EXPECTATION-MAXIMISATION; IDENTIFIABILITY CONDITIONS; MODEL IDENTIFIABILITY; MULTIVARIATE LINEAR REGRESSION ANALYSIS; MULTIVARIATE LINEAR REGRESSION MODEL; UNOBSERVED HETEROGENEITY;

EID: 84889097290     PISSN: 01679473     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.csda.2013.01.017     Document Type: Article
Times cited : (37)

References (44)
  • 1
    • 77958055170 scopus 로고    scopus 로고
    • Extending mixtures of multivariate t-factor analyzers
    • J.L. Andrews, and P.D. McNicholas Extending mixtures of multivariate t-factor analyzers Statistics and Computing 21 2011 361 373
    • (2011) Statistics and Computing , vol.21 , pp. 361-373
    • Andrews, J.L.1    McNicholas, P.D.2
  • 3
    • 0027453616 scopus 로고
    • Model-based Gaussian and non-Gaussian clustering
    • J.D. Banfield, and A.E. Raftery Model-based Gaussian and non-Gaussian clustering Biometrics 49 1993 803 821 (Pubitemid 23298358)
    • (1993) Biometrics , vol.49 , Issue.3 , pp. 803-821
    • Banfield, J.D.1    Raftery, A.E.2
  • 7
    • 0037469122 scopus 로고    scopus 로고
    • Choosing starting values for the EM algorithm for getting the highest likehood in multivariate Gaussian mixture models
    • DOI 10.1016/S0167-9473(02)00163-9, PII S0167947302001639
    • C. Biernacki, G. Celeux, and G. Govaert Choosing starting values for the EM algorithm for getting the highest likelihood in multivariate Gaussian mixture models Computational Statistics and Data Analysis 41 2003 561 575 (Pubitemid 36073008)
    • (2003) Computational Statistics and Data Analysis , vol.41 , Issue.3-4 , pp. 561-575
    • Biernacki, C.1    Celeux, G.2    Govaert, G.3
  • 8
    • 33750342111 scopus 로고    scopus 로고
    • Model-based cluster and discriminant analysis with the MIXMOD software
    • DOI 10.1016/j.csda.2005.12.015, PII S0167947305003300
    • C. Biernacki, G. Celeux, G. Govaert, and F. Langrognet Model-based cluster and discriminant analysis with the MIXMOD software Computational Statistics and Data Analysis 51 2006 587 600 (Pubitemid 44635895)
    • (2006) Computational Statistics and Data Analysis , vol.51 , Issue.2 , pp. 587-600
    • Biernacki, C.1    Celeux, G.2    Govaert, G.3    Langrognet, F.4
  • 9
    • 0029305528 scopus 로고
    • Gaussian parsimonious clustering models
    • G. Celeux, and G. Govaert Gaussian parsimonious clustering models Pattern Recognition 28 1995 781 793
    • (1995) Pattern Recognition , vol.28 , pp. 781-793
    • Celeux, G.1    Govaert, G.2
  • 13
    • 33746447668 scopus 로고    scopus 로고
    • Multivariate Student-t regression models: Pitfalls and inference
    • C. Fernandez, and M.F.J. Steel Multivariate Student-t regression models: pitfalls and inference Biometrika 86 1999 153 167 (Pubitemid 129767138)
    • (1999) Biometrika , vol.86 , Issue.1 , pp. 153-167
    • Fernandez, C.1    Steel, M.F.J.2
  • 15
    • 34547913193 scopus 로고    scopus 로고
    • MCLUST version 3 for R: Normal mixture modeling and model-based clustering
    • Department of Statistics, University of Washington (revised 2009)
    • Fraley, C., Raftery, A.E., 2006. MCLUST version 3 for R: normal mixture modeling and model-based clustering. Technical Report No. 504, Department of Statistics, University of Washington (revised 2009).
    • (2006) Technical Report No. 504
    • Fraley, C.1    Raftery, A.E.2
  • 16
    • 78649934709 scopus 로고    scopus 로고
    • Irvine, CA: University of California, School of Information and Computer Science
    • Frank, A., Asuncion, A., 2010. UCI Machine Learning Repository. Irvine, CA: University of California, School of Information and Computer Science. http://archive.ics.uci.edu/ml.
    • (2010) UCI Machine Learning Repository
    • Frank, A.1    Asuncion, A.2
  • 17
    • 73549091028 scopus 로고    scopus 로고
    • Constrained monotone em algorithms for mixtures of multivariate t distributions
    • F. Greselin, and S. Ingrassia Constrained monotone EM algorithms for mixtures of multivariate t distributions Statistics and Computing 20 2010 9 22
    • (2010) Statistics and Computing , vol.20 , pp. 9-22
    • Greselin, F.1    Ingrassia, S.2
  • 18
    • 54949126376 scopus 로고    scopus 로고
    • FlexMix version 2: Finite mixtures with concomitant variables and varying and constant parameters
    • B. Grün, and F. Leisch FlexMix version 2: finite mixtures with concomitant variables and varying and constant parameters Journal of Statistical Software 28 2008 1 35 http://www.jstatsoft.org/v28/i04/
    • (2008) Journal of Statistical Software , vol.28 , pp. 1-35
    • Grün, B.1    Leisch, F.2
  • 19
    • 33750975344 scopus 로고    scopus 로고
    • Identifiability of finite mixtures of elliptical distributions
    • DOI 10.1111/j.1467-9469.2006.00505.x
    • H. Holzmann, A. Munk, and T. Gneiting Identifiability of finite mixtures of elliptical distributions Scandinavian Journal of Statistics 33 2006 753 763 (Pubitemid 44748186)
    • (2006) Scandinavian Journal of Statistics , vol.33 , Issue.4 , pp. 753-763
    • Holzmann, H.1    Munk, A.2    Gneiting, T.3
  • 21
    • 84858783021 scopus 로고    scopus 로고
    • On the characteristic function of the multivariate t-distribution
    • A.H. Joarder, and M.M. Ali On the characteristic function of the multivariate t-distribution Pakistan Journal of Statistics 12 1996 55 62
    • (1996) Pakistan Journal of Statistics , vol.12 , pp. 55-62
    • Joarder, A.H.1    Ali, M.M.2
  • 22
    • 58149522265 scopus 로고    scopus 로고
    • Model-based clustering with non-elliptically contoured distributions
    • D. Karlis, and A. Santourian Model-based clustering with non-elliptically contoured distributions Statistics and Computing 19 2009 73 83
    • (2009) Statistics and Computing , vol.19 , pp. 73-83
    • Karlis, D.1    Santourian, A.2
  • 26
  • 27
    • 34247855883 scopus 로고    scopus 로고
    • Extension of the mixture of factor analyzers model to incorporate the multivariate t-distribution
    • DOI 10.1016/j.csda.2006.09.015, PII S0167947306003410
    • G.J. McLachlan, R.W. Bean, and L. Ben-Tovim Jones Extension of the mixture of factor analyzers model to incorporate the multivariate t distribution Computational Statistics & Data Analysis 51 2007 5327 5338 (Pubitemid 46694022)
    • (2007) Computational Statistics and Data Analysis , vol.51 , Issue.11 , pp. 5327-5338
    • McLachlan, G.J.1    Bean, R.W.2    Ben-Tovim Jones, L.3
  • 30
    • 70549109507 scopus 로고    scopus 로고
    • Serial and parallel implementations of model-based clustering via parsimonious Gaussian mixture models
    • P.D. McNicholas, T.B. Murphy, A.F. McDaid, and D. Frost Serial and parallel implementations of model-based clustering via parsimonious Gaussian mixture models Computational Statistics and Data Analysis 54 2010 711 723
    • (2010) Computational Statistics and Data Analysis , vol.54 , pp. 711-723
    • McNicholas, P.D.1    Murphy, T.B.2    McDaid, A.F.3    Frost, D.4
  • 31
    • 84857644454 scopus 로고    scopus 로고
    • Initializing the em algorithm in Gaussian mixture models with an unknown number of components
    • V. Melnykov, and I. Melnykov Initializing the EM algorithm in Gaussian mixture models with an unknown number of components Computational Statistics and Data Analysis 56 2012 1381 1395
    • (2012) Computational Statistics and Data Analysis , vol.56 , pp. 1381-1395
    • Melnykov, V.1    Melnykov, I.2
  • 32
    • 84864120602 scopus 로고    scopus 로고
    • Computational aspects of fitting mixture models via the expectation-maximization algorithm
    • A. O'Hagan, T.B. Murphy, and I.C. Gormley Computational aspects of fitting mixture models via the expectation-maximization algorithm Computational Statistics and Data Analysis 56 2012 3843 3864
    • (2012) Computational Statistics and Data Analysis , vol.56 , pp. 3843-3864
    • O'Hagan, A.1    Murphy, T.B.2    Gormley, I.C.3
  • 34
    • 0041407143 scopus 로고    scopus 로고
    • Robust mixture modelling using the t distribution
    • D. Peel, and G.J. McLachlan Robust mixture modelling using the t distribution Statistics and Computing 10 2000 339 348
    • (2000) Statistics and Computing , vol.10 , pp. 339-348
    • Peel, D.1    McLachlan, G.J.2
  • 35
    • 84907095419 scopus 로고    scopus 로고
    • R: A language and environment for statistical computing
    • Vienna Austria 3-900051-07-0 URL
    • R Development Core Team R: a language and environment for statistical computing R Foundation for Statistical Computing 2012 Vienna Austria 3-900051-07-0 URL: http://www.R-project.org
    • (2012) R Foundation for Statistical Computing
  • 37
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • G. Schwarz Estimating the dimension of a model The Annals of Statistics 6 1978 461 464
    • (1978) The Annals of Statistics , vol.6 , pp. 461-464
    • Schwarz, G.1
  • 39
    • 80051469184 scopus 로고    scopus 로고
    • Multivariate linear regression with non-normal errors: A solution based on mixture models
    • G. Soffritti, and G. Galimberti Multivariate linear regression with non-normal errors: a solution based on mixture models Statistics and Computing 21 2011 523 536
    • (2011) Statistics and Computing , vol.21 , pp. 523-536
    • Soffritti, G.1    Galimberti, G.2
  • 41
    • 84949690361 scopus 로고
    • Estimation of the parameters of a regression model with a multivariate t error variable
    • B.C. Sutradhar, and M.M. Ali Estimation of the parameters of a regression model with a multivariate t error variable Communications in Statistics - Theory and Methods 15 1986 429 450
    • (1986) Communications in Statistics - Theory and Methods , vol.15 , pp. 429-450
    • Sutradhar, B.C.1    Ali, M.M.2
  • 42
    • 0000069552 scopus 로고
    • Identifiability of mixtures of product measures
    • H. Teicher Identifiability of mixtures of product measures The Annals of Mathematical Statistics 38 1967 1300 1302
    • (1967) The Annals of Mathematical Statistics , vol.38 , pp. 1300-1302
    • Teicher, H.1
  • 44
    • 0000723104 scopus 로고
    • Bayesian and non-Bayesian analysis of the regression model with multivariate Student-t error terms
    • A. Zellner Bayesian and non-Bayesian analysis of the regression model with multivariate Student-t error terms Journal of the American Statistical Association 71 1976 400 405
    • (1976) Journal of the American Statistical Association , vol.71 , pp. 400-405
    • Zellner, A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.