메뉴 건너뛰기




Volumn 56, Issue 12, 2012, Pages 3843-3864

Computational aspects of fitting mixture models via the expectation-maximization algorithm

Author keywords

Convergence rate; Expectation maximization algorithm; Hierarchical clustering; mclust; Model based clustering; Multimodal likelihood

Indexed keywords

CONVERGENCE RATES; EXPECTATION-MAXIMIZATION ALGORITHMS; HIER-ARCHICAL CLUSTERING; MCLUST; MODEL-BASED CLUSTERING; MULTI-MODAL;

EID: 84864120602     PISSN: 01679473     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.csda.2012.05.011     Document Type: Article
Times cited : (40)

References (43)
  • 1
    • 0000665315 scopus 로고
    • On Bernoulli's numerical solution of algebraic equations
    • A. Aitken On Bernoulli's numerical solution of algebraic equations Proceedings of the Royal Society of Edinburgh 46 1926 289 305
    • (1926) Proceedings of the Royal Society of Edinburgh , vol.46 , pp. 289-305
    • Aitken, A.1
  • 2
    • 21344464829 scopus 로고    scopus 로고
    • A hybrid EM/Gauss-Newton algorithm for maximum likelihood in mixture distributions
    • M. Aitkin, and I. Aitkin A hybrid EM/Gauss-Newton algorithm for maximum likelihood in mixture distributions Statistics and Computing 6 1996 127 130
    • (1996) Statistics and Computing , vol.6 , pp. 127-130
    • Aitkin, M.1    Aitkin, I.2
  • 4
    • 0027453616 scopus 로고
    • Model-based Gaussian and non-Gaussian clustering
    • J.D. Banfield, and A.E. Raftery Model-based Gaussian and non-Gaussian clustering Biometrics 49 1993 803 821
    • (1993) Biometrics , vol.49 , pp. 803-821
    • Banfield, J.D.1    Raftery, A.E.2
  • 6
    • 0346202017 scopus 로고    scopus 로고
    • Modelling the distribution of stamp paper thickness via finite normal mixtures: The 1872 Hidalgo stamp issue of Mexico revisited
    • K. Basford, G. McLachlan, and M. York Modelling the distribution of stamp paper thickness via finite normal mixtures: the 1872 Hidalgo stamp issue of Mexico revisited Journal of Applied Statistics 24 1997 169 180
    • (1997) Journal of Applied Statistics , vol.24 , pp. 169-180
    • Basford, K.1    McLachlan, G.2    York, M.3
  • 7
    • 0030326891 scopus 로고    scopus 로고
    • Regularized Gaussian discriminant analysis through eigenvalue decomposition
    • H. Bensmail, and G. Celeux Regularized Gaussian discriminant analysis through eigenvalue decomposition Journal of the American Statistical Association 91 1996 1743 1748
    • (1996) Journal of the American Statistical Association , vol.91 , pp. 1743-1748
    • Bensmail, H.1    Celeux, G.2
  • 8
    • 0037469122 scopus 로고    scopus 로고
    • Choosing starting values for the em algorithm for getting the highest likelihood in multivariate Gaussian mixture models
    • C. Biernacki, G. Celeux, and G. Govaert Choosing starting values for the EM algorithm for getting the highest likelihood in multivariate Gaussian mixture models Computational Statistics and Data Analysis 41 2003 561 575
    • (2003) Computational Statistics and Data Analysis , vol.41 , pp. 561-575
    • Biernacki, C.1    Celeux, G.2    Govaert, G.3
  • 12
    • 0029305528 scopus 로고
    • Gaussian parsimonious clustering models
    • G. Celeux, and G. Govaert Gaussian parsimonious clustering models Pattern Recognition 28 1995 781 793
    • (1995) Pattern Recognition , vol.28 , pp. 781-793
    • Celeux, G.1    Govaert, G.2
  • 13
    • 0031272327 scopus 로고    scopus 로고
    • Efficient approximations for the marginal likelihood of Bayesian networks with hidden variables
    • D. Chickering, and D. Heckerman Efficient approximations for the marginal likelihood of Bayesian networks with hidden variables Machine Learning 29 1997 181 212
    • (1997) Machine Learning , vol.29 , pp. 181-212
    • Chickering, D.1    Heckerman, D.2
  • 17
    • 0009047534 scopus 로고
    • Maximum likelihood estimation of the parameters in a mixture of two univariate normal distributions; A comparison of different algorithms
    • B. Everitt Maximum likelihood estimation of the parameters in a mixture of two univariate normal distributions; a comparison of different algorithms The Statistician 33 1984 205 215
    • (1984) The Statistician , vol.33 , pp. 205-215
    • Everitt, B.1
  • 19
    • 0000764772 scopus 로고
    • The use of multiple measurements in taxonomic problems
    • R. Fisher The use of multiple measurements in taxonomic problems Annals of Eugenics 7 1936 179 188
    • (1936) Annals of Eugenics , vol.7 , pp. 179-188
    • Fisher, R.1
  • 20
    • 22844453564 scopus 로고    scopus 로고
    • Mclust: Software for model-based clustering
    • C. Fraley, and A.E. Raftery Mclust: software for model-based clustering Journal of Classification 16 1999 297 306
    • (1999) Journal of Classification , vol.16 , pp. 297-306
    • Fraley, C.1    Raftery, A.E.2
  • 21
    • 24344501318 scopus 로고    scopus 로고
    • Breakdown points for maximum likelihood-estimators of location-scale mixtures
    • C. Hennig Breakdown points for maximum likelihood-estimators of location-scale mixtures The Annals of Statistics 32 2004 1313 1340
    • (2004) The Annals of Statistics , vol.32 , pp. 1313-1340
    • Hennig, C.1
  • 23
    • 0001335802 scopus 로고
    • Mixtures of exponential distributions
    • N. Jewell Mixtures of exponential distributions The Annals of Statistics 10 1962 479 484
    • (1962) The Annals of Statistics , vol.10 , pp. 479-484
    • Jewell, N.1
  • 24
  • 26
    • 84864149380 scopus 로고
    • NSF-CBMS Regional Conference Series in Probability and Statistics Institute of Mathematical Statistics
    • B. Lindsay Mixture Models: Theory, Geometry and Applications NSF-CBMS Regional Conference Series in Probability and Statistics 1995 Institute of Mathematical Statistics
    • (1995) Mixture Models: Theory, Geometry and Applications
    • Lindsay, B.1
  • 27
    • 77956705120 scopus 로고    scopus 로고
    • Simulating data to study performance of finite mixture modeling and clustering algorithms
    • R. Maitra, and V. Melnykov Simulating data to study performance of finite mixture modeling and clustering algorithms Journal of Computational and Graphical Statistics 2 2010 354 376
    • (2010) Journal of Computational and Graphical Statistics , vol.2 , pp. 354-376
    • Maitra, R.1    Melnykov, V.2
  • 28
    • 0001294055 scopus 로고
    • The classification and mixture maximum likelihood approaches to cluster analysis
    • G.J. McLachlan The classification and mixture maximum likelihood approaches to cluster analysis Handbook of Statistics 2 1982 199 208
    • (1982) Handbook of Statistics , vol.2 , pp. 199-208
    • McLachlan, G.J.1
  • 31
    • 70549109507 scopus 로고    scopus 로고
    • Serial and parallel implementations of model-based clustering via parsimonious Gaussian mixture models
    • P.D. McNicholas, T.B. Murphy, A.F. McDaid, and D. Frost Serial and parallel implementations of model-based clustering via parsimonious Gaussian mixture models Computational Statistics & Data Analysis 54 2010 711 723
    • (2010) Computational Statistics & Data Analysis , vol.54 , pp. 711-723
    • McNicholas, P.D.1    Murphy, T.B.2    McDaid, A.F.3    Frost, D.4
  • 32
    • 0040076175 scopus 로고
    • Recent extensions of the em algorithm (with discussion)
    • Oxford University Press
    • X.L. Meng, and D.B. Rubin Recent extensions of the EM algorithm (with discussion) Bayesian Statistics 4 1992 Oxford University Press 307 320
    • (1992) Bayesian Statistics 4 , pp. 307-320
    • Meng, X.L.1    Rubin, D.B.2
  • 33
    • 0000251971 scopus 로고
    • Maximum likelihood estimation via the ECM algorithm: A general framework
    • X.L. Meng, and D.B. Rubin Maximum likelihood estimation via the ECM algorithm: a general framework Biometrika 80 1993 267 278
    • (1993) Biometrika , vol.80 , pp. 267-278
    • Meng, X.L.1    Rubin, D.B.2
  • 34
    • 0002788893 scopus 로고    scopus 로고
    • A view of the em algorithm that justifies incremental, sparse, and other variants
    • M.I. Jordan, MIT Press Cambridge, MA, USA
    • R.M. Neal, and G.E. Hinton A view of the EM algorithm that justifies incremental, sparse, and other variants M.I. Jordan, Learning in Graphical Models 1999 MIT Press Cambridge, MA, USA 355 368
    • (1999) Learning in Graphical Models , pp. 355-368
    • Neal, R.M.1    Hinton, G.E.2
  • 35
    • 35748932852 scopus 로고    scopus 로고
    • R Development Core Team R Foundation for Statistical Computing. Vienna, Austria. ISBN: 3-900051-07-0
    • R Development Core Team, 2007. R: a language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria. ISBN: 3-900051-07-0.
    • (2007) R: A Language and Environment for Statistical Computing
  • 37
    • 0000795635 scopus 로고
    • Density estimation with confidence sets exemplified by superclusters and voids in galaxies
    • K. Roeder Density estimation with confidence sets exemplified by superclusters and voids in galaxies Journal of the American Statistical Association 85 1990 617 624
    • (1990) Journal of the American Statistical Association , vol.85 , pp. 617-624
    • Roeder, K.1
  • 38
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • G. Schwarz Estimating the dimension of a model Annals of Statistics 6 1978 461 464
    • (1978) Annals of Statistics , vol.6 , pp. 461-464
    • Schwarz, G.1
  • 39
    • 17044412600 scopus 로고    scopus 로고
    • Types of likelihood maxima in mixture models and their implication on the performance of tests
    • W. Seidel, and H. Ševčíková Types of likelihood maxima in mixture models and their implication on the performance of tests Annals of the Institute of Statistical Mathematics 56 2004 631 654
    • (2004) Annals of the Institute of Statistical Mathematics , vol.56 , pp. 631-654
    • Seidel, W.1    Ševčíková, H.2
  • 40
    • 30344468432 scopus 로고    scopus 로고
    • The topography of multivariate normal mixtures
    • R. Surajit, and B. Lindsay The topography of multivariate normal mixtures The Annals of Statistics 33 2005 2042 2065
    • (2005) The Annals of Statistics , vol.33 , pp. 2042-2065
    • Surajit, R.1    Lindsay, B.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.