메뉴 건너뛰기




Volumn 21, Issue 4, 2011, Pages 523-536

Multivariate linear regression with non-normal errors: A solution based on mixture models

Author keywords

EM algorithm; Mixture model; Model selection criterion; Multivariate regression; Non normal error distribution

Indexed keywords


EID: 80051469184     PISSN: 09603174     EISSN: None     Source Type: Journal    
DOI: 10.1007/s11222-010-9190-3     Document Type: Article
Times cited : (31)

References (52)
  • 1
    • 0000501656 scopus 로고
    • Information theory and an extension of the maximum likelihood principle
    • B. N. Petrov and B. F. Csaki (Eds.), Budapest: Academiai Kiado
    • Akaike, H.: Information theory and an extension of the maximum likelihood principle. In: Petrov, B. N., Csaki, B. F. (eds.) Second International Symposium on Information Theory, pp. 267-281. Academiai Kiado, Budapest (1973).
    • (1973) Second International Symposium on Information Theory , pp. 267-281
    • Akaike, H.1
  • 2
    • 0001122047 scopus 로고    scopus 로고
    • Statistical applications of the multivariate skew normal distribution
    • Azzalini, A., Capitanio, A.: Statistical applications of the multivariate skew normal distribution. J. R. Stat. Soc. Ser. B 61, 579-602 (1999).
    • (1999) J. R. Stat. Soc. Ser. B , vol.61 , pp. 579-602
    • Azzalini, A.1    Capitanio, A.2
  • 3
    • 0037900005 scopus 로고    scopus 로고
    • Distributions generated by perturbation of symmetry, with emphasis on a multivariate skew t-distribution
    • Azzalini, A., Capitanio, A.: Distributions generated by perturbation of symmetry, with emphasis on a multivariate skew t-distribution. J. R. Stat. Soc. Ser. B 65, 367-389 (2003).
    • (2003) J. R. Stat. Soc. Ser. B , vol.65 , pp. 367-389
    • Azzalini, A.1    Capitanio, A.2
  • 4
    • 0027453616 scopus 로고
    • Model-based Gaussian and non-Gaussian clustering
    • Banfield, J. D., Raftery, A. E.: Model-based Gaussian and non-Gaussian clustering. Biometrics 49, 803-821 (1993).
    • (1993) Biometrics , vol.49 , pp. 803-821
    • Banfield, J.D.1    Raftery, A.E.2
  • 5
    • 10444265258 scopus 로고    scopus 로고
    • The use of mixtures for dealing with non-normal regression errors
    • Bartolucci, F., Scaccia, L.: The use of mixtures for dealing with non-normal regression errors. Comput. Stat. Data Anal. 48, 821-834 (2005).
    • (2005) Comput. Stat. Data Anal. , vol.48 , pp. 821-834
    • Bartolucci, F.1    Scaccia, L.2
  • 6
    • 33645945607 scopus 로고    scopus 로고
    • Statistical inference for location and scale of elliptically contoured models with monotone missing data
    • Batsidis, A., Zografos, K.: Statistical inference for location and scale of elliptically contoured models with monotone missing data. J. Stat. Plan. Inference 136, 2606-2629 (2006).
    • (2006) J. Stat. Plan. Inference , vol.136 , pp. 2606-2629
    • Batsidis, A.1    Zografos, K.2
  • 7
    • 38349192617 scopus 로고    scopus 로고
    • Multivariate linear regression model with elliptically contoured distributed errors and monotone missing dependent variables
    • Batsidis, A., Zografos, K.: Multivariate linear regression model with elliptically contoured distributed errors and monotone missing dependent variables. Commun. Stat. Theory 37, 349-372 (2008).
    • (2008) Commun. Stat. Theory , vol.37 , pp. 349-372
    • Batsidis, A.1    Zografos, K.2
  • 8
    • 0034228914 scopus 로고    scopus 로고
    • Assessing a mixture model for clustering with the integrated classification likelihood
    • Biernacki, C., Celeux, G., Govaert, G.: Assessing a mixture model for clustering with the integrated classification likelihood. IEEE Trans. Pattern Anal. Mach. Intell. 22, 719-725 (2000).
    • (2000) IEEE Trans. Pattern Anal. Mach. Intell. , vol.22 , pp. 719-725
    • Biernacki, C.1    Celeux, G.2    Govaert, G.3
  • 9
    • 34250108028 scopus 로고
    • Model selection and Akaike's information criterion (AIC): the general theory and its analytical extensions
    • Bozdogan, H.: Model selection and Akaike's information criterion (AIC): the general theory and its analytical extensions. Psychometrika 52, 345-370 (1987).
    • (1987) Psychometrika , vol.52 , pp. 345-370
    • Bozdogan, H.1
  • 11
    • 0029305528 scopus 로고
    • Gaussian parsimonious clustering models
    • Celeux, G., Govaert, G.: Gaussian parsimonious clustering models. Pattern Recogn. 28, 781-793 (1995).
    • (1995) Pattern Recogn. , vol.28 , pp. 781-793
    • Celeux, G.1    Govaert, G.2
  • 13
    • 0002629270 scopus 로고
    • Maximum likelihood for incomplete data via the EM algorithm
    • Dempster, A. P., Laird, N. M., Rubin, D. B.: Maximum likelihood for incomplete data via the EM algorithm. J. R. Stat. Soc. Ser. B 39, 1-22 (1977).
    • (1977) J. R. Stat. Soc. Ser. B , vol.39 , pp. 1-22
    • Dempster, A.P.1    Laird, N.M.2    Rubin, D.B.3
  • 14
    • 0001237218 scopus 로고
    • A maximum likelihood methodology for clusterwise linear regression
    • DeSarbo, W. S., Cron, W. L.: A maximum likelihood methodology for clusterwise linear regression. J. Classif. 5, 249-282 (1988).
    • (1988) J. Classif. , vol.5 , pp. 249-282
    • Desarbo, W.S.1    Cron, W.L.2
  • 15
    • 0037348819 scopus 로고    scopus 로고
    • Influence diagnostics for elliptical multivariate linear regression models
    • Diaz-Garcia, J. A., Rojas, M. G., Leiva-Sanchez, V.: Influence diagnostics for elliptical multivariate linear regression models. Commun. Stat. Theory 32, 625-642 (2003).
    • (2003) Commun. Stat. Theory , vol.32 , pp. 625-642
    • Diaz-Garcia, J.A.1    Rojas, M.G.2    Leiva-Sanchez, V.3
  • 17
    • 0002528209 scopus 로고
    • The behaviour of stock market prices
    • Fama, E. F.: The behaviour of stock market prices. J. Bus. 38, 34-105 (1965).
    • (1965) J. Bus. , vol.38 , pp. 34-105
    • Fama, E.F.1
  • 19
    • 85006323123 scopus 로고    scopus 로고
    • Bayesian multivariate skewed regression modeling with an application to firm size
    • M. G. Genton (Ed.), Boca Raton: CRC Chapman & Hall
    • Ferreira, J. T. A. S., Steel, M. F. J.: Bayesian multivariate skewed regression modeling with an application to firm size. In: Genton, M. G. (ed.) Skew-Elliptical Distributions and Their Applications: a Journey Beyond Normality, pp. 174-189. CRC Chapman & Hall, Boca Raton (2004).
    • (2004) Skew-Elliptical Distributions and Their Applications: A Journey Beyond Normality , pp. 174-189
    • Ferreira, J.T.A.S.1    Steel, M.F.J.2
  • 20
    • 0032269108 scopus 로고    scopus 로고
    • How many clusters? Which clustering method? Answers via model-based cluster analysis
    • Fraley, C., Raftery, A. E.: How many clusters? Which clustering method? Answers via model-based cluster analysis. Comput. J. 41, 578-588 (1998).
    • (1998) Comput. J. , vol.41 , pp. 578-588
    • Fraley, C.1    Raftery, A.E.2
  • 21
    • 0035998835 scopus 로고    scopus 로고
    • Model-based clustering, discriminant analysis and density estimation
    • Fraley, C., Raftery, A. E.: Model-based clustering, discriminant analysis and density estimation. J. Am. Stat. Assoc. 97, 611-631 (2002).
    • (2002) J. Am. Stat. Assoc. , vol.97 , pp. 611-631
    • Fraley, C.1    Raftery, A.E.2
  • 22
    • 0742306126 scopus 로고    scopus 로고
    • Enhanced software for model-based clustering
    • Fraley, C., Raftery, A. E.: Enhanced software for model-based clustering. J. Classif. 20, 263-286 (2003).
    • (2003) J. Classif. , vol.20 , pp. 263-286
    • Fraley, C.1    Raftery, A.E.2
  • 24
    • 0002222528 scopus 로고    scopus 로고
    • Local influence in elliptical linear regression models
    • Galea, M., Paula, G. A., Bolfarine, H.: Local influence in elliptical linear regression models. Statistician 46, 71-79 (1997).
    • (1997) Statistician , vol.46 , pp. 71-79
    • Galea, M.1    Paula, G.A.2    Bolfarine, H.3
  • 25
    • 34548214332 scopus 로고    scopus 로고
    • Model-based methods to identify multiple cluster structures in a data set
    • Galimberti, G., Soffritti, G.: Model-based methods to identify multiple cluster structures in a data set. Comput. Stat. Data Anal. 52, 520-532 (2007).
    • (2007) Comput. Stat. Data Anal. , vol.52 , pp. 520-532
    • Galimberti, G.1    Soffritti, G.2
  • 26
    • 54949126376 scopus 로고    scopus 로고
    • FlexMix version 2: finite mixtures with concomitant variables and varying and constant parameters
    • Grün, B., Leisch, F.: FlexMix version 2: finite mixtures with concomitant variables and varying and constant parameters. J. Stat. Softw. 28 (2008a). URL http://www. jstatsoft. org/v26/i04/.
    • (2008) J. Stat. Softw , vol.28
    • Grün, B.1    Leisch, F.2
  • 27
    • 79955480292 scopus 로고    scopus 로고
    • Finite mixtures of generalized linear regression models
    • Shalabh and C. Heumann (Eds.), Heidelberg: Physica Verlag
    • Grün, B., Leisch, F.: Finite mixtures of generalized linear regression models. In: Shalabh, Heumann, C. (eds.) Recent Advances in Linear Models and Related Areas, pp. 205-230. Physica Verlag, Heidelberg (2008b).
    • (2008) Recent Advances in Linear Models and Related Areas , pp. 205-230
    • Grün, B.1    Leisch, F.2
  • 28
    • 0034340248 scopus 로고    scopus 로고
    • Identifiability of models for clusterwise linear regression
    • Hennig, C.: Identifiability of models for clusterwise linear regression. J. Classif. 17, 273-296 (2000).
    • (2000) J. Classif. , vol.17 , pp. 273-296
    • Hennig, C.1
  • 29
    • 0036975347 scopus 로고    scopus 로고
    • Fixed point clusters for linear regression: computation and comparison
    • Hennig, C.: Fixed point clusters for linear regression: computation and comparison. J. Classif. 19, 249-276 (2002).
    • (2002) J. Classif. , vol.19 , pp. 249-276
    • Hennig, C.1
  • 30
    • 84963154792 scopus 로고
    • Maximum likelihood estimates of the parameters of a mixture of two regression lines
    • Hosmer, D. W. Jr.: Maximum likelihood estimates of the parameters of a mixture of two regression lines. Commun. Stat. Simul. 3, 995-1006 (1974).
    • (1974) Commun. Stat. Simul. , vol.3 , pp. 995-1006
    • Hosmer Jr., D.W.1
  • 31
    • 0000008146 scopus 로고
    • Comparing partitions
    • Hubert, L., Arabie, P.: Comparing partitions. J. Classif. 2, 193-218 (1985).
    • (1985) J. Classif. , vol.2 , pp. 193-218
    • Hubert, L.1    Arabie, P.2
  • 32
    • 11244333649 scopus 로고    scopus 로고
    • FlexMix: a general framework for finite mixture models and latent class regression in R
    • Leisch, F.: FlexMix: a general framework for finite mixture models and latent class regression in R. J. Stat. Softw. 11 (2004). URL http://www. jstatsoft. org/v11/i08.
    • (2004) J. Stat. Softw , vol.11
    • Leisch, F.1
  • 33
    • 0042123139 scopus 로고    scopus 로고
    • Bayesian robust multivariate linear regression with incomplete data
    • Liu, C.: Bayesian robust multivariate linear regression with incomplete data. J. Am. Stat. Assoc. 91, 1219-1227 (1996).
    • (1996) J. Am. Stat. Assoc. , vol.91 , pp. 1219-1227
    • Liu, C.1
  • 34
    • 84971239675 scopus 로고    scopus 로고
    • Local influence in multivariate elliptical linear regression models
    • Liu, S.: Local influence in multivariate elliptical linear regression models. Linear Algebra Appl. 354, 159-174 (2002).
    • (2002) Linear Algebra Appl. , vol.354 , pp. 159-174
    • Liu, S.1
  • 35
    • 84952511519 scopus 로고
    • Use of the correlation coefficient with normal probability plots
    • Looney, S. W., Gulledge, T. R.: Use of the correlation coefficient with normal probability plots. Am. Stat 39, 75-79 (1985).
    • (1985) Am. Stat , vol.39 , pp. 75-79
    • Looney, S.W.1    Gulledge, T.R.2
  • 36
    • 65749097073 scopus 로고    scopus 로고
    • Variable selection in model-based clustering: a general variable role modeling
    • Maugis, C., Celeux, G., Martin-Magniette, M.-L.: Variable selection in model-based clustering: a general variable role modeling. Comput. Stat. Data Anal. 53, 3872-3882 (2009a).
    • (2009) Comput. Stat. Data Anal. , vol.53 , pp. 3872-3882
    • Maugis, C.1    Celeux, G.2    Martin-Magniette, M.-L.3
  • 37
    • 65749115769 scopus 로고    scopus 로고
    • Variable selection for clustering with Gaussian mixture models
    • Maugis, C., Celeux, G., Martin-Magniette, M.-L.: Variable selection for clustering with Gaussian mixture models. Biometrics 65, 701-709 (2009b).
    • (2009) Biometrics , vol.65 , pp. 701-709
    • Maugis, C.1    Celeux, G.2    Martin-Magniette, M.-L.3
  • 41
    • 5344244656 scopus 로고    scopus 로고
    • R Development Core Team R Foundation for Statistical Computing, Vienna, Austria
    • R Development Core Team: R: A language and environment for statistical computing, R Foundation for Statistical Computing, Vienna, Austria (2008). URL http://www. R-project. org.
    • (2008) R: A language and environment for statistical computing
  • 42
    • 33645505223 scopus 로고    scopus 로고
    • Variable selection for model-based cluster analysis
    • Raftery, A. E., Dean, N.: Variable selection for model-based cluster analysis. J. Am. Stat. Assoc. 101, 168-178 (2006).
    • (2006) J. Am. Stat. Assoc. , vol.101 , pp. 168-178
    • Raftery, A.E.1    Dean, N.2
  • 43
    • 84950632109 scopus 로고
    • Objective criteria for the evaluation of clustering methods
    • Rand, W. M.: Objective criteria for the evaluation of clustering methods. J. Am. Statist. Assoc. 66, 846-850 (1971).
    • (1971) J. Am. Statist. Assoc. , vol.66 , pp. 846-850
    • Rand, W.M.1
  • 44
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • Schwarz, G.: Estimating the dimension of a model. Ann. Stat. 6, 461-464 (1978).
    • (1978) Ann. Stat. , vol.6 , pp. 461-464
    • Schwarz, G.1
  • 45
    • 6744245580 scopus 로고    scopus 로고
    • A cautionary note on likelihood ratio tests in mixture models
    • Seidel, W., Mosler, K., Alker, M.: A cautionary note on likelihood ratio tests in mixture models. Ann. Inst. Stat. Math 52, 481-487 (2000).
    • (2000) Ann. Inst. Stat. Math , vol.52 , pp. 481-487
    • Seidel, W.1    Mosler, K.2    Alker, M.3
  • 48
    • 84949690361 scopus 로고
    • Estimation of the parameters of a regression model with a multivariate t error variable
    • Sutradhar, B. C., Ali, M. M.: Estimation of the parameters of a regression model with a multivariate t error variable. Commun. Stat. Theory 15, 429-450 (1986).
    • (1986) Commun. Stat. Theory , vol.15 , pp. 429-450
    • Sutradhar, B.C.1    Ali, M.M.2
  • 49
    • 0347509690 scopus 로고    scopus 로고
    • Gibrat's legacy
    • Sutton, J.: Gibrat's legacy. J. Econ. Lit. 35, 40-59 (1997).
    • (1997) J. Econ. Lit. , vol.35 , pp. 40-59
    • Sutton, J.1
  • 50
    • 0001500587 scopus 로고
    • A clusterwise regression method for simultaneous fuzzy market structuring and benefit segmentation
    • Wedel, M., Steenkamp, J.-B. E. M.: A clusterwise regression method for simultaneous fuzzy market structuring and benefit segmentation. J. Mark. Res. 28, 385-396 (1991).
    • (1991) J. Mark. Res. , vol.28 , pp. 385-396
    • Wedel, M.1    Steenkamp, J.-B.E.M.2
  • 51
    • 0000411615 scopus 로고
    • On the identifiability of finite mixtures
    • Yakowitz, S. J., Spragins, J. D.: On the identifiability of finite mixtures. Ann. Math. Stat. 39, 209-214 (1968).
    • (1968) Ann. Math. Stat. , vol.39 , pp. 209-214
    • Yakowitz, S.J.1    Spragins, J.D.2
  • 52
    • 0000723104 scopus 로고
    • Bayesian and non-Bayesian analysis of the regression model with multivariate student-t error terms
    • Zellner, A.: Bayesian and non-Bayesian analysis of the regression model with multivariate student-t error terms. J. Am. Stat. Assoc. 71, 400-405 (1976).
    • (1976) J. Am. Stat. Assoc. , vol.71 , pp. 400-405
    • Zellner, A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.