-
1
-
-
0003126597
-
Espaces fonctionnels associés au calcul de Weyl-Hörmander, Bull
-
MR 1259109. Zbl 0798. 35172. Available at
-
J.-M. Bony and J.-Y. Chemin, Espaces fonctionnels associés au calcul de Weyl-Hörmander, Bull. Soc. Math. France 122 1994, 77-118. MR 1259109. Zbl 0798. 35172. Available at http://smf4.emath.fr/Publications/Bulletin/122/html/smfbull12277-118.html.
-
(1994)
Soc. Math. France
, vol.122
, pp. 77-118
-
-
Bony, J.-M.1
Chemin, J.-Y.2
-
2
-
-
0008723973
-
Contrôle de l'équation des plaques en présence d'obstacle strictement convexes, Mém
-
MR 1254820. Zbl 0930. 93007
-
N. Burq, Contrôle de l'équation des plaques en présence d'obstacle strictement convexes, Mém. Soc. Math. France 55 1993, 3-126. MR 1254820. Zbl 0930. 93007.
-
(1993)
Soc. Math. France
, vol.55
, pp. 3-126
-
-
Burq, N.1
-
3
-
-
34248682657
-
Growth and zeros of the zeta function for hyperbolic rational maps, Canad
-
MR 2310619. Zbl 1116.37032
-
H. Christianson, Growth and zeros of the zeta function for hyperbolic rational maps, Canad. J. Math. 59 2007, 311-331. MR 2310619. Zbl 1116.37032. http://dx.doi.org/10.4153/CJM-2007-013-4.
-
(2007)
J. Math.
, vol.59
, pp. 311-331
-
-
Christianson, H.1
-
4
-
-
84880509919
-
Fractal Weylławs for asymptotically hyperbolic manifolds, Geom
-
MR 3077910. Zbl 06197801
-
K. Datchev and S. Dyatlov, Fractal Weylławs for asymptotically hyperbolic manifolds, Geom. Funct. Anal. 23 2013, 1145-1206. MR 3077910. Zbl 06197801. http://dx.doi.org/10.1007/s00039-013-0225-8.
-
(2013)
Funct. Anal.
, vol.23
, pp. 1145-1206
-
-
Datchev, K.1
Dyatlov, S.2
-
5
-
-
84873545614
-
Propagation through trapped sets and semiclassical resolvent estimates, Ann
-
(2013). MR 3060760. Zbl 06159914
-
K. Datchev and A. Vasy, Propagation through trapped sets and semiclassical resolvent estimates, Ann. Inst. Fourier (Grenoble) 62 2012, 2347-2377 (2013). MR 3060760. Zbl 06159914. http://dx.doi.org/10.5802/aif.2751.
-
(2012)
Inst. Fourier (Grenoble)
, vol.62
, pp. 2347-2377
-
-
Datchev, K.1
Vasy, A.2
-
6
-
-
0003395273
-
Spectral Asymptotics in the Semi-Classical Limit
-
London Math. Soc. Lecture Note Ser. 268, Cambridge Univ. Press, Cambridge, MR 1735654. Zbl 0926.35002
-
M. Dimassi and J. Sjöstrand, Spectral Asymptotics in the Semi-Classical Limit, London Math. Soc. Lecture Note Ser. 268, Cambridge Univ. Press, Cambridge, 1999. MR 1735654. Zbl 0926.35002. http://dx.doi.org/10.1017/CBO9780511662195.
-
(1999)
-
-
Dimassi, M.1
Sjöstrand, J.2
-
7
-
-
78651302215
-
Fractal Weylław for threedimensional chaotic hard-sphere scattering systems
-
12. MR 2788043
-
A. Eberspácher, J. Main, and G. Wunner, Fractal Weylław for threedimensional chaotic hard-sphere scattering systems, Phys. Rev. E 82 (2010), 046201, 12. MR 2788043. http://dx.doi.org/10.1103/PhysRevE.82.046201.
-
(2010)
Phys. Rev. E
, vol.82
, pp. 046201
-
-
Eberspácher, A.1
Main, J.2
Wunner, G.3
-
8
-
-
84868333606
-
Fractal Weylław for Linux Kernel architecture
-
L. Ermann, A. D. Chepelianskii, and D. L. Shepelyansky, Fractal Weylław for Linux Kernel architecture, Eur. Phys. J. B79 (2011), 115-120. http://dx.doi.org/10.1140/epjb/e2010-10774-7.
-
(2011)
Eur. Phys. J.
, vol.B79
, pp. 115-120
-
-
Ermann, L.1
Chepelianskii, A.D.2
Shepelyansky, D.L.3
-
9
-
-
77954564189
-
Ulam method and fractal Weylław for Perron-Frobenius operators
-
Zbl 1202.81074.
-
L. Ermann and D. L. Shepelyansky, Ulam method and fractal Weylław for Perron-Frobenius operators, Eur. Phys. J. B75 (2010), 299-304. Zbl 1202.81074. http://dx.doi.org/10.1140/epjb/e2010-00144-0.
-
(2010)
Eur. Phys. J.
, vol.B75
, pp. 299-304
-
-
Ermann, L.1
Shepelyansky, D.L.2
-
10
-
-
84972319951
-
The wave front set of the solution of a simple initialboundary value problem with glancing rays, Math
-
MR 0393861. Zbl 0319.35053
-
F. G. Friedlander, The wave front set of the solution of a simple initialboundary value problem with glancing rays, Math. Proc. Cambridge Philos. Soc. 79 1976, 145-159. MR 0393861. Zbl 0319.35053. http://dx.doi.org/10.1017/S0305004100052166.
-
(1976)
Proc. Cambridge Philos. Soc.
, vol.79
, pp. 145-159
-
-
Friedlander, F.G.1
-
11
-
-
36549094784
-
Semiclassical quantization of the scattering from a classically chaotic repellor, J
-
MR 0980393
-
P. Gaspard and S. A. Rice, Semiclassical quantization of the scattering from a classically chaotic repellor, J. Chem. Phys. 90 1989, 2242-2254. MR 0980393. http://dx.doi.org/10.1063/1.456018.
-
(1989)
Chem. Phys.
, vol.90
, pp. 2242-2254
-
-
Gaspard, P.1
Rice, S.A.2
-
12
-
-
0002383326
-
Asymptotique des pôles deła matrice de scattering pour deux obstacles strictement convexes, Mém
-
MR 0998698. Zbl 0654.35081
-
C. Gérard, Asymptotique des pôles deła matrice de scattering pour deux obstacles strictement convexes, Mém. Soc. Math. France 31 1988, 1-146. MR 0998698. Zbl 0654.35081.
-
(1988)
Soc. Math. France
, vol.31
, pp. 1-146
-
-
Gérard, C.1
-
13
-
-
0001716466
-
Semiclassical resonances generated by a closed trajectory of hyperbolic type, Comm
-
MR 0874901. Zbl 0637.35027
-
C. Gérard and J. Sjöstrand, Semiclassical resonances generated by a closed trajectory of hyperbolic type, Comm. Math. Phys. 108 1987, 391-421. MR 0874901. Zbl 0637.35027. http://dx.doi.org/10.1007/BF01212317.
-
(1987)
Math. Phys.
, vol.108
, pp. 391-421
-
-
Gérard, C.1
Sjöstrand, J.2
-
14
-
-
1542403824
-
The Selberg zeta function for convex co-compact Schottky groups
-
MR 2036371. Zbl 1075.11059
-
L. Guillopé, K. K. Lin, and M. Zworski, The Selberg zeta function for convex co-compact Schottky groups, Comm. Math. Phys. 245 2004, 149-176. MR 2036371. Zbl 1075.11059. http://dx.doi.org/10.1007/s00220-003-1007-1.
-
(2004)
Comm. Math. Phys.
, vol.245
, pp. 149-176
-
-
Guillopé, L.1
Lin, K.K.2
Zworski, M.3
-
15
-
-
0002330387
-
Semiclassical analysis for Harper's equation. III. Cantor structure of the spectrum
-
MR 1041490. Zbl 0725.34099
-
B. Helffer and J. Sjöstrand, Semiclassical analysis for Harper's equation. III. Cantor structure of the spectrum, Mém. Soc. Math. France 39 1989, 1-124. MR 1041490. Zbl 0725.34099.
-
(1989)
Mém. Soc. Math. France
, vol.39
, pp. 1-124
-
-
Helffer, B.1
Sjöstrand, J.2
-
16
-
-
0003284894
-
The Analysis of Linear Partial Diérential Operators. I: Dis- tribution Theory and Fourier Analysis
-
Springer-Verlag, New York, MR 0717035. Zbl 0521.35001
-
L. Hörmander, The Analysis of Linear Partial Diérential Operators. I: Dis- tribution Theory and Fourier Analysis, Grundlehren Math. Wiss. 256, Springer-Verlag, New York, 1983. MR 0717035. Zbl 0521.35001. http://dx.doi.org/10.1007/978-3-642-96750-4.
-
(1983)
Grundlehren Math. Wiss.
, vol.256
-
-
Hörmander, L.1
-
17
-
-
0003284894
-
The analysis ofłinear partial diérential operators. III. Pseudo-diérential operators
-
Springer-Verlag, New York, MR 0781536. Zbl 0601.35001.
-
L. Hörmander, The analysis ofłinear partial diérential operators. III. Pseudo-diérential operators, Grundlehren Math. Wiss. 274, Springer-Verlag, New York, 1985. MR 0781536. Zbl 0601.35001. http://dx.doi.org/10.1007/978-3-540-49938-1.
-
(1985)
Grundlehren Math. Wiss.
, vol.274
-
-
Hörmander, L.1
-
18
-
-
0001489105
-
Decay of solutions of the wave equation in the exterior of several convex bodies, Ann
-
MR 0949013. Zbl 0636.35045
-
M. Ikawa, Decay of solutions of the wave equation in the exterior of several convex bodies, Ann. Inst. Fourier (Grenoble) 38 1988, 113-146. MR 0949013. Zbl 0636.35045. http://dx.doi.org/10.5802/aif.1137.
-
(1988)
Inst. Fourier (Grenoble)
, vol.38
, pp. 113-146
-
-
Ikawa, M.1
-
19
-
-
84880511796
-
Lower bounds for resonances of infinite-area Riemann surfaces, Anal
-
MR 2657455. Zbl 1243.11064
-
D. Jakobson and F. Naud, Lower bounds for resonances of infinite-area Riemann surfaces, Anal. PDE 3 2010, 207-225. MR 2657455. Zbl 1243.11064. http://dx.doi.org/10.2140/apde.2010.3.207.
-
(2010)
PDE
, vol.3
, pp. 207-225
-
-
Jakobson, D.1
Naud, F.2
-
20
-
-
0003195540
-
Introduction to the Modern Theory of Dynam- ical Systems
-
Cambridge Univ. Press, Cambridge, MR 1326374. Zbl 0878.58020
-
A. Katok and B. Hasselblatt, Introduction to the Modern Theory of Dynam- ical Systems, Encycl. Math. Appl. 54, Cambridge Univ. Press, Cambridge, 1995. MR 1326374. Zbl 0878.58020.
-
(1995)
Encycl. Math. Appl.
, vol.54
-
-
Katok, A.1
Hasselblatt, B.2
-
21
-
-
77249113333
-
Fractal Weylławs for quantum decay in dynamical systems with a mixed phase space
-
M. Kopp and H. Schomerus, Fractal Weylławs for quantum decay in dynamical systems with a mixed phase space, Phys. Rev. E. 81 (2010), 026308, 6. http://dx.doi.org/10.1103/PhysRevE.81.026208.
-
(2010)
Phys. Rev. E.
, vol.81
-
-
Kopp, M.1
Schomerus, H.2
-
22
-
-
0036501082
-
Numerical study of quantum resonances in chaotic scattering, J
-
MR 1894769. Zbl 1021.81021
-
K. K. Lin, Numerical study of quantum resonances in chaotic scattering, J. Comput. Phys. 176 2002, 295-329. MR 1894769. Zbl 1021.81021. http://dx.doi.org/10.1006/jcph.2001.6986.
-
(2002)
Comput. Phys.
, vol.176
, pp. 295-329
-
-
Lin, K.K.1
-
23
-
-
8744307577
-
Fractal Weylławs for chaotic open systems
-
W. Lu, S. Sridhar, and M. Zworski, Fractal Weylławs for chaotic open systems, Phys. Rev. Lett. 91 (2003), 154101, 4. http://dx.doi.org/10.1103/PhysRevLett.91.154101.
-
(2003)
Phys. Rev. Lett.
, vol.91
-
-
Lu, W.1
Sridhar, S.2
Zworski, M.3
-
24
-
-
0000426182
-
Equivalence of glancing hypersurfaces, Invent
-
MR 0436225. Zbl 0354.53033
-
R. B. Melrose, Equivalence of glancing hypersurfaces, Invent. Math. 37 1976, 165-191. MR 0436225. Zbl 0354.53033. http://dx.doi.org/10.1007/BF01390317.
-
(1976)
Math.
, vol.37
, pp. 165-191
-
-
Melrose, R.B.1
-
25
-
-
84888413379
-
Polynomial bound on the distribution of poles in scattering by an obstacle, Journées\" Equations aux Dérivées partielles"
-
Saint-Jean de Monts, Zbl 0621.35073. Available at
-
R. B. Melrose, Polynomial bound on the distribution of poles in scattering by an obstacle, Journées\" Equations aux Dérivées partielles", Saint-Jean de Monts, 1984. Zbl 0621.35073. Available at http://jedp.cedram.org/jedp-bin/fitem?id=JEDP1984A30.
-
(1984)
-
-
Melrose, R.B.1
-
26
-
-
33747494582
-
Semilinear Diffraction of Conormal Waves
-
MR 1636412. Zbl 0902.35004
-
R. B. Melrose, A. Sa Barreto, and M. Zworski, Semilinear Diffraction of Conormal Waves, Astérisque 240, 1996. MR 1636412. Zbl 0902.35004.
-
(1996)
Astérisque
, vol.240
-
-
Melrose, R.B.1
Sa Barreto, A.2
Zworski, M.3
-
27
-
-
0000498121
-
Near peak scattering and the corrected Kirchhoffapproximation for a convex obstacle
-
MR 0778964. Zbl 0591.58034
-
R. B. Melrose and M. E. Taylor, Near peak scattering and the corrected Kirchhoffapproximation for a convex obstacle, Adv. in Math. 55 1985, 242-315. MR 0778964. Zbl 0591.58034. http://dx.doi.org/10.1016/0001-8708(85)90093-3.
-
(1985)
Adv. in Math.
, vol.55
, pp. 242-315
-
-
Melrose, R.B.1
Taylor, M.E.2
-
28
-
-
85027921946
-
Density andłocalization of resonances for convex co-compact hyperbolic surfaces
-
published online 9 March
-
F. Naud, Density andłocalization of resonances for convex co-compact hyperbolic surfaces, Invent. Math.; published online 9 March 2013. http://dx.doi.org/10.1007/s00222-013-0463-2.
-
(2013)
Invent. Math.
-
-
Naud, F.1
-
29
-
-
79952218957
-
From open quantum systems to open quantum maps
-
MR 2793928. Zbl 1223.81127
-
S. Nonnenmacher, J. Sjöstrand, and M. Zworski, From open quantum systems to open quantum maps, Comm. Math. Phys. 304 2011, 1-48. MR 2793928. Zbl 1223.81127. http://dx.doi.org/10.1007/s00220-011-1214-0.
-
(2011)
Comm. Math. Phys.
, vol.304
, pp. 1-48
-
-
Nonnenmacher, S.1
Sjöstrand, J.2
Zworski, M.3
-
30
-
-
33845774786
-
Distribution of resonances for open quantum maps, Comm
-
MR 2274550. Zbl 1114.81043
-
S. Nonnenmacher and M. Zworski, Distribution of resonances for open quantum maps, Comm. Math. Phys. 269 2007, 311-365. MR 2274550. Zbl 1114.81043. http://dx.doi.org/10.1007/s00220-006-0131-0.
-
(2007)
Math. Phys.
, vol.269
, pp. 311-365
-
-
Nonnenmacher, S.1
Zworski, M.2
-
31
-
-
60749085074
-
Distribution of resonances in the quantum open baker map
-
J. M. Pedrosa, G. G. Carlo, D. A. Wisniacki, and L. Ermann, Distribution of resonances in the quantum open baker map, Phys. Rev. E 79 (2009), 016215, 5. http://dx.doi.org/10.1103/PhysRevE.79.016215.
-
(2009)
Phys. Rev. E
, vol.79
-
-
Pedrosa, J.M.1
Carlo, G.G.2
Wisniacki, D.A.3
Ermann, L.4
-
32
-
-
79952958227
-
Analytic continuation of the resolvent of the Laplacian and the dynamical zeta function, Anal
-
MR 2718260. Zbl 1251.37031
-
V. Petkov and L. Stoyanov, Analytic continuation of the resolvent of the Laplacian and the dynamical zeta function, Anal. PDE 3 2010, 427-489. MR 2718260. Zbl 1251.37031. http://dx.doi.org/10.2140/apde.2010.3.427.
-
(2010)
PDE
, vol.3
, pp. 427-489
-
-
Petkov, V.1
Stoyanov, L.2
-
33
-
-
0000264457
-
Wada basin boundaries in chaotic scattering
-
MR 1390157. Zbl 0870.58069
-
L. Poon, J. Campos, E. Ott, and C. Grebogi, Wada basin boundaries in chaotic scattering, Internat. J. Bifur. Chaos Appl. Sci. Engrg. 6 1996, 251-265. MR 1390157. Zbl 0870.58069. http://dx.doi.org/10.1142/S0218127496000035.
-
(1996)
Internat. J. Bifur. Chaos Appl. Sci. Engrg.
, vol.6
, pp. 251-265
-
-
Poon, L.1
Campos, J.2
Ott, E.3
Grebogi, C.4
-
34
-
-
84871464408
-
Weyl asymptotics: from closed to open systems
-
A. Potzuweit, T. Weich, S. Barkhofen, U. Kuhl, H. J. Stöckmann, and M. Zworski, Weyl asymptotics: from closed to open systems, Phys. Rev. E 86 (2012), 066205, 8. http://dx.doi.org/10.1103/PhysRevE.86.066205.
-
(2012)
Phys. Rev. E
, vol.86
-
-
Potzuweit, A.1
Weich, T.2
Barkhofen, S.3
Kuhl, U.4
Stöckmann, H.J.5
Zworski, M.6
-
35
-
-
71849086215
-
Fractal Weylław behavior in an open Hamiltonian system
-
MR 2593897
-
J. A. Ramilowski, S. D. Prado, F. Borondo, and D. Farrelly, Fractal Weylław behavior in an open Hamiltonian system, Phys. Rev. E 80 (2009), 055201, 4. MR 2593897. http://dx.doi.org/10.1103/PhysRevE.80.055201.
-
(2009)
Phys. Rev. E
, vol.80
-
-
Ramilowski, J.A.1
Prado, S.D.2
Borondo, F.3
Farrelly, D.4
-
36
-
-
51649194761
-
Analytic properties of the scattering matrix
-
MR 0095702. Zbl 0080.41903
-
T. Regge, Analytic properties of the scattering matrix, Nuovo Cimento 8 (1958), 671-679. MR 0095702. Zbl 0080.41903. http://dx.doi.org/10.1007/BF02815247.
-
(1958)
Nuovo Cimento
, vol.8
, pp. 671-679
-
-
Regge, T.1
-
37
-
-
19644400759
-
Quantum-to-classical crossover of quasibound states in open quantum systems
-
H. Schomerus and J. Tworzydło, Quantum-to-classical crossover of quasibound states in open quantum systems, Phys. Rev. Lett. 93 (2004), 154102, 4. http://dx.doi.org/10.1103/PhysRevLett.93.154102.
-
(2004)
Phys. Rev. Lett.
, vol.93
-
-
Schomerus, H.1
Tworzydło, J.2
-
38
-
-
65549135238
-
Lifetime statistics in chaotic dielectric microresonators
-
H. Schomerus, J. Wiersig, and J. Main, Lifetime statistics in chaotic dielectric microresonators, Phys. Rev. A 79 (2009), 053806, 8. http://dx.doi.org/10.1103/PhysRevA.79.053806.
-
(2009)
Phys. Rev. A
, vol.79
-
-
Schomerus, H.1
Wiersig, J.2
Main, J.3
-
39
-
-
60149097907
-
Fractal Weylław for quantum fractal eigenstates
-
D. L. Shepelyansky, Fractal Weylław for quantum fractal eigenstates, Phys. Rev. E 77 (2008), 015202, 4. http://dx.doi.org/10.1103/PhysRevE.77.015202.
-
(2008)
Phys. Rev. E
, vol.77
-
-
Shepelyansky, D.L.1
-
40
-
-
84974003886
-
Geometric bounds on the density of resonances for semiclassical problems, Duke Math
-
MR 1047116. Zbl 0702.35188
-
J. Sjöstrand, Geometric bounds on the density of resonances for semiclassical problems, Duke Math. J. 60 2002, 1-57. MR 1047116. Zbl 0702.35188. http://dx.doi.org/10.1215/S0012-7094-90-06001-6.
-
(2002)
J.
, vol.60
, pp. 1-57
-
-
Sjöstrand, J.1
-
41
-
-
84873058513
-
Eigenvalue distribution for non-self-adjoint operators with small multiplicative random perturbations, Ann
-
MR 2590387. Zbl 1194.47058
-
J. Sjöstrand, Eigenvalue distribution for non-self-adjoint operators with small multiplicative random perturbations, Ann. Fac. Sci. Toulouse Math. 18 2009, 739-795. MR 2590387. Zbl 1194.47058. http://dx.doi.org/10.5802/afst.1223.
-
(2009)
Fac. Sci. Toulouse Math.
, vol.18
, pp. 739-795
-
-
Sjöstrand, J.1
-
42
-
-
33751083232
-
Lectures on resonances
-
Available at
-
J. Sjöstrand, Lectures on resonances. Available at http://sjostrand.perso.math.cnrs.fr/Coursgbg.pdf.
-
-
-
Sjöstrand, J.1
-
43
-
-
84968505435
-
Complex scaling and the distribution of scattering poles, J
-
MR 1115789. Zbl 0752.35046
-
J. Sjöstrand and M. Zworski, Complex scaling and the distribution of scattering poles, J. Amer. Math. Soc. 4 1991, 729-769. MR 1115789. Zbl 0752.35046. http://dx.doi.org/10.2307/2939287.
-
(1991)
Amer. Math. Soc.
, vol.4
, pp. 729-769
-
-
Sjöstrand, J.1
Zworski, M.2
-
44
-
-
0036236324
-
Quantum monodromy and semi-classical trace formulae, J
-
MR 1994881. Zbl 1038.58033
-
J. Sjöstrand and M. Zworski, Quantum monodromy and semi-classical trace formulae, J. Math. Pures Appl. 81 2002, 1-33. MR 1994881. Zbl 1038.58033. http://dx.doi.org/10.1016/S0021-7824(01)01230-2.
-
(2002)
Math. Pures Appl.
, vol.81
, pp. 1-33
-
-
Sjöstrand, J.1
Zworski, M.2
-
45
-
-
40949165861
-
Elementaryłinear algebra for advanced spectral problems, Ann
-
MR 2394537. Zbl 1140.15009
-
J. Sjöstrand and M. Zworski, Elementaryłinear algebra for advanced spectral problems, Ann. Inst. Fourier (Grenoble) 57 2007, 2095-2141. MR 2394537. Zbl 1140.15009. http://dx.doi.org/10.5802/aif.2328.
-
(2007)
Inst. Fourier (Grenoble)
, vol.57
, pp. 2095-2141
-
-
Sjöstrand, J.1
Zworski, M.2
-
46
-
-
34248399658
-
Fractal upper bounds on the density of semiclassical resonances, Duke Math
-
MR 2309150. Zbl 1201.35189
-
J. Sjöstrand and M. Zworski, Fractal upper bounds on the density of semiclassical resonances, Duke Math. J. 137 2007, 381-459. MR 2309150. Zbl 1201.35189. http://dx.doi.org/10.1215/S0012-7094-07-13731-1.
-
(2007)
J.
, vol.137
, pp. 381-459
-
-
Sjöstrand, J.1
Zworski, M.2
-
47
-
-
0002168385
-
Quasimodes and resonances: sharpłower bounds, Duke Math
-
MR 1700740. Zbl 0952.47013
-
P. Stefanov, Quasimodes and resonances: sharpłower bounds, Duke Math. J. 99 1999, 75-92. MR 1700740. Zbl 0952.47013. http://dx.doi.org/10.1215/S0012-7094-99-09903-9.
-
(1999)
J.
, vol.99
, pp. 75-92
-
-
Stefanov, P.1
-
48
-
-
29744440695
-
Sharp upper bounds on the number of the scattering poles, J
-
MR 2190165. Zbl 1099.35074
-
P. Stefanov, Sharp upper bounds on the number of the scattering poles, J. Funct. Anal. 231 2006, 111-142. MR 2190165. Zbl 1099.35074. http://dx.doi.org/10.1016/j.jfa.2005.07.007.
-
(2006)
Funct. Anal.
, vol.231
, pp. 111-142
-
-
Stefanov, P.1
-
49
-
-
84974003828
-
Distribution of resonances for the Neumann problem inłinear elasticity outside a strictly convex body, Duke Math
-
MR 1334206. Zbl 0846.35139
-
P. Stefanov and G. Vodev, Distribution of resonances for the Neumann problem inłinear elasticity outside a strictly convex body, Duke Math. J. 78 1995, 677-714. MR 1334206. Zbl 0846.35139. http://dx.doi.org/10.1215/S0012-7094-95-07825-9.
-
(1995)
J.
, vol.78
, pp. 677-714
-
-
Stefanov, P.1
Vodev, G.2
-
50
-
-
4644244044
-
Growth of the zeta function for a quadratic map and the dimension of the Julia set
-
MR 2086141. Zbl 1066.37031
-
J. Strain and M. Zworski, Growth of the zeta function for a quadratic map and the dimension of the Julia set, Nonlinearity 17 (2004), 1607-1622. MR 2086141. Zbl 1066.37031. http://dx.doi.org/10.1088/0951-7715/17/5/003.
-
(2004)
Nonlinearity
, vol.17
, pp. 1607-1622
-
-
Strain, J.1
Zworski, M.2
-
51
-
-
0034375059
-
Resonance expansions of scattered waves, Comm
-
MR 1768812. Zbl 1032.35148
-
S.-H. Tang and M. Zworski, Resonance expansions of scattered waves, Comm. Pure Appl. Math. 53 2000, 1305-1334. MR 1768812. Zbl 1032.35148.
-
(2000)
Pure Appl. Math.
, vol.53
, pp. 1305-1334
-
-
Tang, S.-H.1
Zworski, M.2
-
52
-
-
0004196526
-
Pseudodiérential Operators
-
Series, Princeton Univ. Press, Princeton, N.J., MR 0618463. Zbl 0453.47026
-
M. E. Taylor, Pseudodiérential Operators, Princeton Univ. Math. Series 34, Princeton Univ. Press, Princeton, N.J., 1981. MR 0618463. Zbl 0453.47026.
-
(1981)
Princeton Univ. Math.
, vol.34
-
-
Taylor, M.E.1
-
53
-
-
0002322505
-
Exterior elliptic problems that depend polynomially on the spectral parameter, and the asymptotic behavior forłarge values of the time of the solutions of nonstationary problems, Mat
-
MR 0346319. Zbl 0294.35031
-
B. R. Vainberg, Exterior elliptic problems that depend polynomially on the spectral parameter, and the asymptotic behavior forłarge values of the time of the solutions of nonstationary problems, Mat. Sb. 134 1973, 224-241. MR 0346319. Zbl 0294.35031.
-
(1973)
Sb.
, vol.134
, pp. 224-241
-
-
Vainberg, B.R.1
-
54
-
-
0034349282
-
Semiclassical estimates in asymptotically Euclidean scattering, Comm
-
MR 1764368. Zbl 0955. 58023
-
A. Vasy and M. Zworski, Semiclassical estimates in asymptotically Euclidean scattering, Comm. Math. Phys. 212 2000, 205-217. MR 1764368. Zbl 0955. 58023. http://dx.doi.org/10.1007/s002200000207.
-
(2000)
Math. Phys.
, vol.212
, pp. 205-217
-
-
Vasy, A.1
Zworski, M.2
-
55
-
-
0003139937
-
Sharp bounds on the number of scattering poles in even-dimensional spaces, Duke Math
-
MR 1271461. Zbl 0813.35075
-
G. Vodev, Sharp bounds on the number of scattering poles in even-dimensional spaces, Duke Math. J. 74 1994, 1-17. MR 1271461. Zbl 0813.35075. http://dx.doi.org/10.1215/S0012-7094-94-07401-2.
-
(1994)
J.
, vol.74
, pp. 1-17
-
-
Vodev, G.1
-
56
-
-
40949145193
-
Fractal Weylław for chaotic microcavities: Fresnel'sławs imply multifractal scattering
-
J. Wiersig and J. Main, Fractal Weylław for chaotic microcavities: Fresnel'sławs imply multifractal scattering, Phys. Rev. E 77 (2008), 036205, 8. http://dx.doi.org/10.1103/PhysRevE.77.036205.
-
(2008)
Phys. Rev. E
, vol.77
-
-
Wiersig, J.1
Main, J.2
-
57
-
-
80053456378
-
Resolvent estimates for normally hyperbolic trapped sets, Ann
-
MR 2846671. Zbl 1164. 47326
-
J. Wunsch and M. Zworski, Resolvent estimates for normally hyperbolic trapped sets, Ann. Henri Poincaré 12 2011, 1349-1385. MR 2846671. Zbl 1164. 47326. http://dx.doi.org/10.1007/s00023-011-0108-1.
-
(2011)
Henri Poincaré
, vol.12
, pp. 1349-1385
-
-
Wunsch, J.1
Zworski, M.2
-
58
-
-
84862136216
-
Semiclassical Analysis
-
Grad. Studies in Math, Amer. Math. Soc., Providence, RI, MR 2952218. Zbl 1252.58001
-
M. Zworski, Semiclassical Analysis, Grad. Studies in Math. 138, Amer. Math. Soc., Providence, RI, 2012. MR 2952218. Zbl 1252.58001.
-
(2012)
, vol.138
-
-
Zworski, M.1
|