메뉴 건너뛰기




Volumn 3, Issue 2, 2010, Pages 207-225

LOWER BOUNDS FOR RESONANCES OF INFINITE-AREA RIEMANN SURFACES

Author keywords

Arithmetic fuchsian groups; Laplacian; Resonances

Indexed keywords


EID: 84880511796     PISSN: 21575045     EISSN: 1948206X     Source Type: Journal    
DOI: 10.2140/apde.2010.3.207     Document Type: Article
Times cited : (14)

References (29)
  • 1
    • 85125839714 scopus 로고    scopus 로고
    • Spectral deviations for the damped wave equation
    • [Anantharaman 2009] preprint, 2009. arXiv 0904.1736 [Bogomolny et al. 1997] E. B. Bogomolny, B. Georgeot, M.-J. Giannoni, and C. Schmit, (1997), MR 99c:11062
    • [Anantharaman 2009] N. Anantharaman, “Spectral deviations for the damped wave equation”, preprint, 2009. arXiv 0904.1736 [Bogomolny et al. 1997] E. B. Bogomolny, B. Georgeot, M.-J. Giannoni, and C. Schmit, “Arithmetical chaos”, Phys. Rep.291:5-6 (1997), 219-324. MR 99c:11062
    • Arithmetical chaos”, Phys. Rep , vol.291 , Issue.5-6 , pp. 219-324
    • Anantharaman, N.1
  • 2
    • 49549094427 scopus 로고    scopus 로고
    • Spectral theory ofinfinite-area hyperbolic surfaces
    • [Borthwick 2007] Birkhäuser, Boston,MA,. MR2008h:58056 Zbl 1130.58001
    • [Borthwick 2007] D. Borthwick, Spectral theory ofinfinite-area hyperbolic surfaces, Progress in Mathematics 256, Birkhäuser, Boston,MA,2007. MR2008h:58056 Zbl 1130.58001
    • (2007) Progress in Mathematics , vol.256
    • Borthwick, D.1
  • 3
    • 49549084186 scopus 로고    scopus 로고
    • Upper and lower bounds on resonances for manifolds hyperbolic near infinity
    • [Borthwick 2008] MR 2009i:58039 Zbl 1168.58012
    • [Borthwick 2008] D. Borthwick, “Upper and lower bounds on resonances for manifolds hyperbolic near infinity”, Comm. PartialDifferentialEquations 33:7-9 (2008), 1507-1539. MR 2009i:58039 Zbl 1168.58012
    • (2008) Comm. PartialDifferentialEquations , vol.33 , Issue.7-9 , pp. 1507-1539
    • Borthwick, D.1
  • 5
    • 0142168845 scopus 로고    scopus 로고
    • On the spectral gap for infinite index “congruence” subgroups of SL2(Z)
    • [Gamburd 2002] MR2003b:11050
    • [Gamburd 2002] A. Gamburd, “On the spectral gap for infinite index “congruence” subgroups of SL2(Z)”, Israel J. Math. 127 (2002), 157-200. MR2003b:11050
    • (2002) Israel J. Math , vol.127 , pp. 157-200
    • Gamburd, A.1
  • 6
    • 33846651297 scopus 로고    scopus 로고
    • Wave 0-trace and length spectrum on convex co-compact hyperbolic manifolds
    • [Guillarmou and Naud 2006] MR 2008f:58032 Zbl 1127.58028
    • [Guillarmou and Naud 2006] C. Guillarmou and F. Naud, “Wave 0-trace and length spectrum on convex co-compact hyperbolic manifolds”, Comm. Anal. Geom. 14:5 (2006), 945-967. MR 2008f:58032 Zbl 1127.58028
    • (2006) Comm. Anal. Geom , vol.14 , Issue.5 , pp. 945-967
    • Guillarmou, C.1    Naud, F.2
  • 7
    • 0001081330 scopus 로고
    • Upper bounds on the number of resonances for non-compact Riemann surfaces
    • [Guillopé and Zworski 1995] MR 96b:58116 Zbl 0841.58063
    • [Guillopé and Zworski 1995] L. Guillopé and M. Zworski, “Upper bounds on the number of resonances for non-compact Riemann surfaces”, J. Funct. Anal. 129:2 (1995), 364-389. MR 96b:58116 Zbl 0841.58063
    • (1995) J. Funct. Anal , vol.129 , Issue.2 , pp. 364-389
    • Guillopé, L.1    Zworski, M.2
  • 8
    • 0031486229 scopus 로고    scopus 로고
    • Scattering asymptotics for Riemann surfaces
    • [Guillopé and Zworski 1997] MR98g:58181 Zbl0898.58054
    • [Guillopé and Zworski 1997] L. Guillopé and M. Zworski, “Scattering asymptotics for Riemann surfaces”, Ann. of Math. (2) 145:3 (1997),597-660. MR98g:58181 Zbl0898.58054
    • (1997) Ann. of Math. (2) , vol.145 , Issue.3 , pp. 597-660
    • Guillopé, L.1    Zworski, M.2
  • 9
    • 0033276488 scopus 로고    scopus 로고
    • The wave trace for Riemann surfaces
    • [Guillopé and Zworski 1999] MR2001a:11086 Zbl0947.58022
    • [Guillopé and Zworski 1999] L. Guillopé and M. Zworski, “The wave trace for Riemann surfaces”, Geom. Funct. Anal. 9:6 (1999),1156-1168. MR2001a:11086 Zbl0947.58022
    • (1999) Geom. Funct. Anal , vol.9 , Issue.6 , pp. 1156-1168
    • Guillopé, L.1    Zworski, M.2
  • 10
    • 1542403824 scopus 로고    scopus 로고
    • The Selberg zeta function for convex co-compact Schottky groups
    • [Guillopé et al. 2004] MR 2005f:11193 Zbl 1075.11059
    • [Guillopé et al. 2004] L. Guillopé, K. K. Lin, and M. Zworski, “The Selberg zeta function for convex co-compact Schottky groups”, Comm. Math. Phys. 245:1 (2004), 149-176. MR 2005f:11193 Zbl 1075.11059
    • (2004) Comm. Math. Phys , vol.245 , Issue.1 , pp. 149-176
    • Guillopé, L.1    Lin, K. K.2    Zworski, M.3
  • 12
    • 35148850933 scopus 로고    scopus 로고
    • Estimates from below for the spectral function and for the remainder in localWeyl’s law
    • [Jakobson and Polterovich 2007] MR 2009h:35302 Zbl 1161.58012
    • [Jakobson and Polterovich 2007] D. Jakobson and I. Polterovich, “Estimates from below for the spectral function and for the remainder in localWeyl’s law”, Geom. Funct. Anal. 17:3 (2007), 806-838. MR 2009h:35302 Zbl 1161.58012
    • (2007) Geom. Funct. Anal , vol.17 , Issue.3 , pp. 806-838
    • Jakobson, D.1    Polterovich, I.2
  • 13
    • 84904331560 scopus 로고    scopus 로고
    • A lower bound for the remainder in Weyl’s law on negatively curved surfaces
    • [Jakobson et al. 2008] MR 2009f:58038
    • [Jakobson et al. 2008] D. Jakobson, I. Polterovich, and J. A. Toth, “A lower bound for the remainder in Weyl’s law on negatively curved surfaces”, Int. Math. Res. Not. 2008:2 (2008). MR 2009f:58038
    • (2008) Int. Math. Res. Not , vol.2008 , pp. 2
    • Jakobson, D.1    Polterovich, I.2    Toth, J. A.3
  • 14
    • 0004117363 scopus 로고
    • [Katok 1992] University ofChicago Press, Chicago, MR 93d:20088 Zbl 0753.30001
    • [Katok 1992] S. Katok, Fuchsian groups, University ofChicago Press, Chicago, 1992. MR 93d:20088 Zbl 0753.30001
    • (1992) Fuchsian groups
    • Katok, S.1
  • 15
    • 84990600904 scopus 로고
    • Translation representation for automorphic solutions of the wave equation in non-Euclidean spaces, I
    • [Lax and Phillips 1984a] MR 86c:58148 Zbl 0549.10024
    • [Lax and Phillips 1984a] P. D. Lax and R. S. Phillips, “Translation representation for automorphic solutions of the wave equation in non-Euclidean spaces, I”, Comm. Pure Appl. Math. 37:3 (1984), 303-328. MR 86c:58148 Zbl 0549.10024
    • (1984) Comm. Pure Appl. Math , vol.37 , Issue.3 , pp. 303-328
    • Lax, P. D.1    Phillips, R. S.2
  • 16
    • 84990553480 scopus 로고
    • Translation representations for automorphic solutions of the wave equation in non-Euclidean spaces, II
    • [Lax and Phillips 1984b] MR 86h:58140 Zbl 0549.10019
    • [Lax and Phillips 1984b] P. D. Lax and R. S. Phillips, “Translation representations for automorphic solutions of the wave equation in non-Euclidean spaces, II”, Comm. PureAppl. Math. 37:6 (1984), 779-813. MR 86h:58140 Zbl 0549.10019
    • (1984) Comm. PureAppl. Math , vol.37 , Issue.6 , pp. 779-813
    • Lax, P. D.1    Phillips, R. S.2
  • 17
    • 84990578234 scopus 로고
    • Translation representations for automorphic solutions of the wave equation in non-Euclidean spaces, III
    • [Lax and Phillips 1985] MR 86j:58150 Zbl 0578.10033
    • [Lax and Phillips 1985] P. D. Lax and R. S. Phillips, “Translation representations for automorphic solutions of the wave equation in non-Euclidean spaces, III”, Comm. PureAppl. Math. 38:2 (1985), 179-207. MR 86j:58150 Zbl 0578.10033
    • (1985) Comm. PureAppl. Math , vol.38 , Issue.2 , pp. 179-207
    • Lax, P. D.1    Phillips, R. S.2
  • 18
    • 21344479357 scopus 로고
    • Number variance for arithmetic hyperbolic surfaces
    • [Luo and Sarnak 1994] MR95k:11076 Zbl0797.58069
    • [Luo and Sarnak 1994] W. Luo and P. Sarnak, “Number variance for arithmetic hyperbolic surfaces”, Comm. Math. Phys. 161:2 (1994),419-432. MR95k:11076 Zbl0797.58069
    • (1994) Comm. Math. Phys , vol.161 , Issue.2 , pp. 419-432
    • Luo, W.1    Sarnak, P.2
  • 19
    • 0001189870 scopus 로고
    • Meromorphic extension of the resolvent on complete spaces with asymptotically constant negative curvature
    • [Mazzeo and Melrose 1987] MR 89c:58133 Zbl 0636.58034
    • [Mazzeo and Melrose 1987] R. R. Mazzeo and R. B. Melrose, “Meromorphic extension of the resolvent on complete spaces with asymptotically constant negative curvature”, J. Funct. Anal. 75:2 (1987), 260-310. MR 89c:58133 Zbl 0636.58034
    • (1987) J. Funct. Anal , vol.75 , Issue.2 , pp. 260-310
    • Mazzeo, R. R.1    Melrose, R. B.2
  • 20
    • 16244383902 scopus 로고    scopus 로고
    • Precise asymptotics of the length spectrum for finite-geometry Riemann surfaces
    • [Naud 2005] Zbl 1073.37021
    • [Naud 2005] F. Naud, “Precise asymptotics of the length spectrum for finite-geometry Riemann surfaces”, Int. Math. Res. Not. 2005 (2005), 299-310. Zbl 1073.37021
    • (2005) Int. Math. Res. Not , vol.2005 , pp. 299-310
    • Naud, F.1
  • 21
    • 0000131067 scopus 로고
    • The limit set of a Fuchsian group
    • [Patterson 1976] MR 56 #8841 Zbl 0336.30005
    • [Patterson 1976] S. J. Patterson, “The limit set of a Fuchsian group”, Acta Math. 136:3-4 (1976), 241-273. MR 56 #8841 Zbl 0336.30005
    • (1976) Acta Math , vol.136 , Issue.3-4 , pp. 241-273
    • Patterson, S. J.1
  • 22
    • 84972558528 scopus 로고
    • On the spectrum of the Hecke groups
    • [Phillips and Sarnak 1985] MR86j:11042 Zbl0564.30030
    • [Phillips and Sarnak 1985] R. S. Phillips and P. Sarnak, “On the spectrum of the Hecke groups”, Duke Math. J. 52:1 (1985), 211-221. MR86j:11042 Zbl0564.30030
    • (1985) Duke Math. J , vol.52 , Issue.1 , pp. 211-221
    • Phillips, R. S.1    Sarnak, P.2
  • 23
    • 0013099996 scopus 로고
    • Ground state and lowest eigenvalue of the Laplacian for noncompact hyperbolic surfaces
    • [Pignataro and Sullivan 1986] MR 87m:58178
    • [Pignataro and Sullivan 1986] T. Pignataro and D. Sullivan, “Ground state and lowest eigenvalue of the Laplacian for noncompact hyperbolic surfaces”, Comm. Math. Phys. 104:4 (1986), 529-535. MR 87m:58178
    • (1986) Comm. Math. Phys , vol.104 , Issue.4 , pp. 529-535
    • Pignataro, T.1    Sullivan, D.2
  • 24
    • 84974003886 scopus 로고
    • Geometric bounds on the density of resonances for semiclassical problems
    • [Sjostrand 1990] MR91e:35166 Zbl0702.35188
    • [Sjostrand 1990] J. Sjostrand, “Geometric bounds on the density of resonances for semiclassical problems”, Duke Math. J. 60:1 (1990), 1-57. MR91e:35166 Zbl0702.35188
    • (1990) Duke Math. J , vol.60 , Issue.1 , pp. 1-57
    • Sjostrand, J.1
  • 25
    • 34248399658 scopus 로고    scopus 로고
    • Fractal upper bounds on the density of semiclassical resonances
    • [Sjostrand and Zworski 2007] MR2008e:35037 Zbl05154881
    • [Sjostrand and Zworski 2007] J. Sjostrand and M. Zworski, “Fractal upper bounds on the density of semiclassical resonances”, DukeMath.J.137:3 (2007),381-459. MR2008e:35037 Zbl05154881
    • (2007) DukeMath.J , vol.137 , Issue.3 , pp. 381-459
    • Sjostrand, J.1    Zworski, M.2
  • 26
    • 51249182653 scopus 로고
    • The density at infinity of a discrete group of hyperbolic motions
    • [Sullivan 1979] MR81b:58031 Zbl0439.30034
    • [Sullivan 1979] D. Sullivan, “The density at infinity of a discrete group of hyperbolic motions”, Inst. Hautes Études Sci. Publ. Math. 50 (1979),171-202. MR81b:58031 Zbl0439.30034
    • (1979) Inst. Hautes Études Sci. Publ. Math , vol.50 , pp. 171-202
    • Sullivan, D.1
  • 27
    • 0000144097 scopus 로고
    • Entropy, Hausdorff measures old and new, and limit sets of geometrically finite Kleinian groups
    • [Sullivan 1984] MR86c:58093 Zbl0566.58022
    • [Sullivan 1984] D. Sullivan, “Entropy, Hausdorff measures old and new, and limit sets of geometrically finite Kleinian groups”, ActaMath. 153:3-4(1984),259-277. MR86c:58093 Zbl0566.58022
    • (1984) ActaMath , vol.153 , Issue.3-4 , pp. 259-277
    • Sullivan, D.1
  • 28
    • 84972494106 scopus 로고
    • A characterization of arithmetic Fuchsian groups
    • [Takeuchi 1975] MR53#2842 Zbl0311.20030
    • [Takeuchi 1975] K. Takeuchi, “A characterization of arithmetic Fuchsian groups”, J. Math. Soc. Japan 27:4 (1975), 600-612.MR53#2842 Zbl0311.20030
    • (1975) J. Math. Soc. Japan , vol.27 , Issue.4 , pp. 600-612
    • Takeuchi, K.1
  • 29
    • 0033473946 scopus 로고    scopus 로고
    • Dimension of the limit set and the density of resonances for convex co-compact hyperbolic surfaces
    • [Zworski 1999] MR 2002d:58038 Zbl 1016.58014
    • [Zworski 1999] M. Zworski, “Dimension of the limit set and the density of resonances for convex co-compact hyperbolic surfaces”, Invent.Math. 136:2(1999),353-409. MR 2002d:58038 Zbl 1016.58014
    • (1999) Invent.Math , vol.136 , Issue.2 , pp. 353-409
    • Zworski, M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.