메뉴 건너뛰기




Volumn 23, Issue 4, 2013, Pages 1145-1206

Fractal Weyl laws for asymptotically hyperbolic manifolds

Author keywords

[No Author keywords available]

Indexed keywords


EID: 84880509919     PISSN: 1016443X     EISSN: None     Source Type: Journal    
DOI: 10.1007/s00039-013-0225-8     Document Type: Article
Times cited : (40)

References (60)
  • 1
    • 42549083917 scopus 로고    scopus 로고
    • Semi-classical wavefront set and Fourier integral operators
    • I. Alexandrova Semi-classical wavefront set and Fourier integral operators, Can. J. Math. 60: 2 (2008), 241-263.
    • (2008) Can. J. Math. , vol.60 , Issue.2 , pp. 241-263
    • Alexandrova, I.1
  • 2
    • 0002705160 scopus 로고    scopus 로고
    • Hausdorff dimension and Kleinian groups
    • C. J. Bishop and P. W. Jones Hausdorff dimension and Kleinian groups, Acta Math., 179: 1 (1997), 1-39.
    • (1997) Acta Math. , vol.179 , Issue.1 , pp. 1-39
    • Bishop, C.J.1    Jones, P.W.2
  • 3
    • 0003126597 scopus 로고
    • Espaces fonctionnels associés au calcul de Weyl-Hörmander
    • J.-M. Bony and J.-Y. Chemin Espaces fonctionnels associés au calcul de Weyl-Hörmander, Bull. Soc. Math. France 122: 1 (1994), 77-118.
    • (1994) Bull. Soc. Math. France , vol.122 , Issue.1 , pp. 77-118
    • Bony, J.-M.1    Chemin, J.-Y.2
  • 4
    • 0035993972 scopus 로고    scopus 로고
    • Scattering poles for asymptotically hyperbolic manifolds
    • D. Borthwick and P. Perry Scattering poles for asymptotically hyperbolic manifolds, Trans. Amer. Math. Soc. 354: 3 (2002), 1215-1231.
    • (2002) Trans. Amer. Math. Soc , vol.354 , Issue.3 , pp. 1215-1231
    • Borthwick, D.1    Perry, P.2
  • 5
    • 51249186941 scopus 로고
    • Hausdorff dimension of quasi-circles, Inst
    • Bowen R.: Hausdorff dimension of quasi-circles, Inst. Hautes Etudes Sci. Publ. Math. 50, 11-25 (1979).
    • (1979) Hautes Etudes Sci. Publ. Math. , vol.50 , pp. 11-25
    • Bowen, R.1
  • 6
    • 0033422076 scopus 로고    scopus 로고
    • Group cohomology and the singularities of the Selberg zeta function associated to a Kleinian group
    • (2)
    • U. Bunke and M. Olbrich, Group cohomology and the singularities of the Selberg zeta function associated to a Kleinian group, Ann. of Math. (2) 149: 2 (1999), 627-689.
    • (1999) Ann. of Math. , vol.149 , Issue.2 , pp. 627-689
    • Bunke, U.1    Olbrich, M.2
  • 7
    • 84873545614 scopus 로고    scopus 로고
    • Propagation through trapped sets and semiclassical resolvent estimates
    • K. Datchev and A. Vasy, Propagation through trapped sets and semiclassical resolvent estimates, Ann. Inst. Fourier (Grenoble) 62: 6 (2012), 2347-2377.
    • (2012) Ann. Inst. Fourier (Grenoble) , vol.62 , Issue.6 , pp. 2347-2377
    • Datchev, K.1    Vasy, A.2
  • 9
    • 84862128000 scopus 로고    scopus 로고
    • Asymptotic distribution of quasi-normal modes for Kerr-de Sitter black holes
    • S. Dyatlov, Asymptotic distribution of quasi-normal modes for Kerr-de Sitter black holes, Ann. Henri Poincaré, 13: 5 (2012), 1101-1156.
    • (2012) Ann. Henri Poincare , vol.13 , Issue.5 , pp. 1101-1156
    • Dyatlov, S.1
  • 13
    • 0001407441 scopus 로고
    • The zeta functions of Ruelle and Selberg
    • D. Fried, The zeta functions of Ruelle and Selberg Ann. Ecole Norm. Sup. 19: 4 (1986), 491-517.
    • (1986) Ann. Ecole Norm. Sup. , vol.19 , Issue.4 , pp. 491-517
    • Fried, D.1
  • 15
    • 0001716466 scopus 로고
    • Semiclassical resonances generated by a closed trajectory of hyperbolic type
    • C. Gérard and J. Sjöstrand, Semiclassical resonances generated by a closed trajectory of hyperbolic type, Comm. Math. Phys. 108: 3 (1987), 391-421.
    • (1987) Comm. Math. Phys. , vol.108 , Issue.3 , pp. 391-421
    • Gérard, C.1    Sjöstrand, J.2
  • 16
    • 0037596450 scopus 로고    scopus 로고
    • Scattering matrix in conformal geometry
    • C. R. Graham and M. Zworski, Scattering matrix in conformal geometry, Invent. Math. 152: 1 (2003), 89-118.
    • (2003) Invent. Math. , vol.152 , Issue.1 , pp. 89-118
    • Graham, C.R.1    Zworski, M.2
  • 17
    • 0003253881 scopus 로고
    • Microlocal analysis for differential operators: an introduction
    • Cambridge University Press
    • A. Grigis and J. Sjöstrand, Microlocal analysis for differential operators: an introduction, London Mathematical Society Lecture Note Series, 196, Cambridge University Press (1994).
    • (1994) London Mathematical Society Lecture Note Series , vol.196
    • Grigis, A.1    Sjöstrand, J.2
  • 18
    • 24144449996 scopus 로고    scopus 로고
    • Meromorphic properties of the resolvent on asymptotically hyperbolic manifolds
    • C. Guillarmou, Meromorphic properties of the resolvent on asymptotically hyperbolic manifolds, Duke Math. J. 129: 1 (2005), 1-37.
    • (2005) Duke Math. J. , vol.129 , Issue.1 , pp. 1-37
    • Guillarmou, C.1
  • 19
    • 17044432690 scopus 로고    scopus 로고
    • Resonances and scattering poles on asymptotically hyperbolic manifolds
    • C. Guillarmou, Resonances and scattering poles on asymptotically hyperbolic manifolds, Math. Res. Lett. 12: 1 (2005), 103-109.
    • (2005) Math. Res. Lett. , vol.12 , Issue.1 , pp. 103-109
    • Guillarmou, C.1
  • 20
    • 84855552086 scopus 로고    scopus 로고
    • Spectral analysis of the Laplacian on geometrically finite hyperbolic manifolds
    • C. Guillarmou and R. Mazzeo, Spectral analysis of the Laplacian on geometrically finite hyperbolic manifolds, Invent. Math. 187: 1 (2012), 99-144.
    • (2012) Invent. Math. , vol.187 , Issue.1 , pp. 99-144
    • Guillarmou, C.1    Mazzeo, R.2
  • 23
    • 1542403824 scopus 로고    scopus 로고
    • The Selberg zeta function for convex co-compact Schottky groups
    • L. Guillopé, K. K. Lin and M. Zworski, The Selberg zeta function for convex co-compact Schottky groups, Comm. Math. Phys. 245: 1 (2004), 149-176.
    • (2004) Comm. Math. Phys. , vol.245 , Issue.1 , pp. 149-176
    • Guillopé, L.1    Lin, K.K.2    Zworski, M.3
  • 24
    • 77950036040 scopus 로고
    • Polynomial bounds on the number of resonances for some complete spaces of constant negative curvature near infinity
    • L. Guillopé and M. Zworski, Polynomial bounds on the number of resonances for some complete spaces of constant negative curvature near infinity. Asymptotic Anal. 11: 1 (1995), 1-22.
    • (1995) Asymptotic Anal. , vol.11 , Issue.1 , pp. 1-22
    • Guillopé, L.1    Zworski, M.2
  • 25
    • 0001081330 scopus 로고
    • Upper bounds on the number of resonances for non-compact Riemann surfaces
    • L. Guillopé and M. Zworski, Upper bounds on the number of resonances for non-compact Riemann surfaces, J. Funct. Anal. 129: 2 (1995), 364-389.
    • (1995) J. Funct. Anal. , vol.129 , Issue.2 , pp. 364-389
    • Guillopé, L.1    Zworski, M.2
  • 26
    • 0031486229 scopus 로고    scopus 로고
    • Scattering asymptotics for Riemann surfaces
    • (2)
    • L. Guillopé and M. Zworski, Scattering asymptotics for Riemann surfaces, Ann. of Math. (2) 145: 3 (1997), 597-660.
    • (1997) Ann. of Math. , vol.145 , Issue.3 , pp. 597-660
    • Guillopé, L.1    Zworski, M.2
  • 28
    • 84880511796 scopus 로고    scopus 로고
    • Lower bounds for resonances of infinite-area Riemann surfaces
    • D. Jakobson and F. Naud, Lower bounds for resonances of infinite-area Riemann surfaces, Anal. PDE 3: 2 (2010), 207-225.
    • (2010) Anal. PDE , vol.3 , Issue.2 , pp. 207-225
    • Jakobson, D.1    Naud, F.2
  • 30
    • 0004117363 scopus 로고
    • Chicago Lectures in Math., University of Chicago Press
    • S. Katok, Fuchsian groups, Chicago Lectures in Math., University of Chicago Press (1992).
    • (1992) Fuchsian groups
    • Katok, S.1
  • 32
    • 8744307577 scopus 로고    scopus 로고
    • Fractal Weyl laws for chaotic open systems
    • W. Lu, S. Sridhar and M. Zworski, Fractal Weyl laws for chaotic open systems. Phys. Rev. Lett. 91: 15 (2003), 154101.
    • (2003) Phys. Rev. Lett. , vol.91 , Issue.15 , pp. 154101
    • Lu, W.1    Sridhar, S.2    Zworski, M.3
  • 34
    • 0001189870 scopus 로고
    • Meromorphic extension of the resolvent on complete spaces with asymptotically constant negative curvature
    • R. R. Mazzeo and R. B. Melrose, Meromorphic extension of the resolvent on complete spaces with asymptotically constant negative curvature, J. Func. Anal. 75: 2 (1987), 260-310.
    • (1987) J. Func. Anal. , vol.75 , Issue.2 , pp. 260-310
    • Mazzeo, R.R.1    Melrose, R.B.2
  • 35
    • 0000179312 scopus 로고
    • Polynomial bounds on the number of scattering poles
    • Melrose R.: Polynomial bounds on the number of scattering poles. J. Funct. Anal. 53, 287-303 (1983).
    • (1983) J. Funct. Anal. , vol.53 , pp. 287-303
    • Melrose, R.1
  • 36
    • 0002058225 scopus 로고
    • Spectral and scattering theory for the Laplacian on asymptotically Euclidean spaces, Spectral and scattering theory
    • R. Melrose, Spectral and scattering theory for the Laplacian on asymptotically Euclidean spaces, Spectral and scattering theory, Lecture Notes in Pure and Appl. Math. 161 (1994), 85-130.
    • (1994) Lecture Notes in Pure and Appl. Math. , vol.161 , pp. 85-130
    • Melrose, R.1
  • 39
    • 81855177048 scopus 로고    scopus 로고
    • Spectral problems in open quantum chaos
    • S. Nonnenmacher, Spectral problems in open quantum chaos, Nonlinearity 24: 12 (2011), R123-R167.
    • (2011) Nonlinearity , vol.24 , Issue.12
    • Nonnenmacher, S.1
  • 40
  • 41
    • 84880507059 scopus 로고    scopus 로고
    • Fractal Weyl law for open quantum chaotic maps
    • to appear, preprint, arXiv: 1105
    • S. Nonnenmacher, J. Sjöstrand and M. Zworski, Fractal Weyl law for open quantum chaotic maps, to appear in Ann. of Math. (2), preprint, arXiv: 1105. 3128.
    • Ann. of Math , Issue.2 , pp. 3128
    • Nonnenmacher, S.1    Sjöstrand, J.2    Zworski, M.3
  • 42
    • 33845774786 scopus 로고    scopus 로고
    • Distribution of resonances for open quantum maps
    • S. Nonnenmacher and M. Zworski, Distribution of resonances for open quantum maps, Comm. Math. Phys. 269: 2 (2007), 311-365.
    • (2007) Comm. Math. Phys. , vol.269 , Issue.2 , pp. 311-365
    • Nonnenmacher, S.1    Zworski, M.2
  • 43
    • 0000131067 scopus 로고
    • The limit set of a Fuchsian group
    • S. J. Patterson, The limit set of a Fuchsian group, Acta Math. 136: 1 (1976), 241-273.
    • (1976) Acta Math. , vol.136 , Issue.1 , pp. 241-273
    • Patterson, S.J.1
  • 44
    • 0001167134 scopus 로고    scopus 로고
    • The divisor of Selberg's zeta function for Kleinian groups
    • S. J. Patterson and P. A. Perry, The divisor of Selberg's zeta function for Kleinian groups, Duke Math. J. 106: 2 (2001), 321-390.
    • (2001) Duke Math. J. , vol.106 , Issue.2 , pp. 321-390
    • Patterson, S.J.1    Perry, P.A.2
  • 45
    • 0031539570 scopus 로고    scopus 로고
    • Distribution of resonances for spherical black holes
    • A. Sá Barreto and M. Zworski, Distribution of resonances for spherical black holes, Math. Res. Lett. 4: 1 (1997), 103-121.
    • (1997) Math. Res. Lett. , vol.4 , Issue.1 , pp. 103-121
    • Sá Barreto, A.1    Zworski, M.2
  • 46
    • 84974003886 scopus 로고
    • Geometric bounds on the density of resonances for semiclassical problems
    • J. Sjöstrand, Geometric bounds on the density of resonances for semiclassical problems, Duke Math. J. 60: 1 (1990), 1-57.
    • (1990) Duke Math. J. , vol.60 , Issue.1 , pp. 1-57
    • Sjöstrand, J.1
  • 48
    • 34248399658 scopus 로고    scopus 로고
    • Fractal upper bounds on the density of semiclassical resonances
    • J. Sjöstrand and M. Zworski, Fractal upper bounds on the density of semiclassical resonances, Duke Math. J. 137: 3 (2007), 381-459.
    • (2007) Duke Math. J. , vol.137 , Issue.3 , pp. 381-459
    • Sjöstrand, J.1    Zworski, M.2
  • 49
    • 51249182653 scopus 로고
    • The density at infinity of a discrete group of hyperbolic motions
    • Sullivan D.: The density at infinity of a discrete group of hyperbolic motions. Publ. IHES 50, 172-202 (1979).
    • (1979) Publ. IHES , vol.50 , pp. 172-202
    • Sullivan, D.1
  • 50
    • 0000144097 scopus 로고
    • Entropy, Hausdorff measures new and old and limit sets of geometrically finite Kleinian groups
    • D. Sullivan, Entropy, Hausdorff measures new and old and limit sets of geometrically finite Kleinian groups, Acta Math. 153: 1 (1984), 259-277.
    • (1984) Acta Math. , vol.153 , Issue.1 , pp. 259-277
    • Sullivan, D.1
  • 53
    • 84939890909 scopus 로고    scopus 로고
    • Microlocal analysis of asymptotically hyperbolic and Kerr-de Sitter spaces
    • to appear in, preprint, arXiv: 1012. 4391v2
    • A. Vasy, Microlocal analysis of asymptotically hyperbolic and Kerr-de Sitter spaces, to appear in Invent. Math., preprint, arXiv: 1012. 4391v2.
    • Invent. Math.
    • Vasy, A.1
  • 55
    • 0034349282 scopus 로고    scopus 로고
    • Semiclassical estimates in asymptotically Euclidean scattering
    • A. Vasy and M. Zworski, Semiclassical estimates in asymptotically Euclidean scattering, Comm. Math. Phys. 212: 1 (2000), 205-217.
    • (2000) Comm. Math. Phys. , vol.212 , Issue.1 , pp. 205-217
    • Vasy, A.1    Zworski, M.2
  • 56
    • 84880511468 scopus 로고    scopus 로고
    • Systèmes intégrables semi-classiques: du local au global
    • S. V. Ngc, Systèmes intégrables semi-classiques: du local au global, Panoramas et Synthèses 22, (2006).
    • (2006) Panoramas et Synthèses , vol.22
    • Ngc, S.V.1
  • 57
    • 0040199721 scopus 로고    scopus 로고
    • Distribution of resonances for asymptotically Euclidean manifolds
    • J. Wunsch and M. Zworski, Distribution of resonances for asymptotically Euclidean manifolds, J. Diff. Geometry. 55: 1 (2000), 43-82.
    • (2000) J. Diff. Geometry. , vol.55 , Issue.1 , pp. 43-82
    • Wunsch, J.1    Zworski, M.2
  • 58
    • 80053456378 scopus 로고    scopus 로고
    • Resolvent estimates for normally hyperbolic trapped sets
    • J. Wunsch and M. Zworski, Resolvent estimates for normally hyperbolic trapped sets, Ann. Henri Poincaré, 12: 7 (2011), 1349-1385.
    • (2011) Ann. Henri Poincare , vol.12 , Issue.7 , pp. 1349-1385
    • Wunsch, J.1    Zworski, M.2
  • 59
    • 0033473946 scopus 로고    scopus 로고
    • Dimension of the limit set and the density of resonances for convex co-compact hyperbolic surfaces
    • M. Zworski, Dimension of the limit set and the density of resonances for convex co-compact hyperbolic surfaces, Invent. Math. 136: 2 (1999), 353-409.
    • (1999) Invent. Math. , vol.136 , Issue.2 , pp. 353-409
    • Zworski, M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.