메뉴 건너뛰기




Volumn 41, Issue 4 PART 1, 2014, Pages 1176-1188

Ensemble methods for advanced skier days prediction

Author keywords

Data mining; Ensemble learning; Forecasting; Skier days

Indexed keywords

ACCURACY IMPROVEMENT; CLASSIFICATION AND REGRESSION TREE; ENSEMBLE LEARNING; MACHINE LEARNING TECHNIQUES; MULTIPLE LINEAR REGRESSIONS; RESEARCH AND APPLICATION; SKIER DAYS; TOURISM APPLICATION;

EID: 84888342478     PISSN: 09574174     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.eswa.2013.08.002     Document Type: Article
Times cited : (32)

References (66)
  • 1
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • L. Breiman Bagging predicto (Pubitemid 126724382)
    • (1996) Machine Learning , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 3
    • 0035021368 scopus 로고    scopus 로고
    • A practitioners guide to time-series methods for tourism demand forecasting a case study of Durban, South Africa
    • DOI 10.1016/S0261-5177(00)00068-6, PII S0261517700000686
    • C.J.S.C. Burger, and M. Dohnal A practitioners guide to time-series methods for tourism demand forecasting - A case study of Durban, South Africa Tourism Management 22 4 2001 403 409 (Pubitemid 32467981)
    • (2001) Tourism Management , vol.22 , Issue.4 , pp. 403-409
    • Burger, C.J.S.C.1    Dohnal, M.2    Kathrada, M.3    Law, R.4
  • 4
    • 79953692971 scopus 로고    scopus 로고
    • Combining linear and nonlinear model in forecasting tourism demand
    • K.Y. Chen Combining linear and nonlinear model in forecasting tourism demand Expert Systems with Applications 38 8 2011 10368 10376
    • (2011) Expert Systems with Applications , vol.38 , Issue.8 , pp. 10368-10376
    • Chen, K.Y.1
  • 5
    • 0041813336 scopus 로고    scopus 로고
    • A comparison of three different approaches to tourist arrival forecasting
    • DOI 10.1016/S0261-5177(02)00068-7, PII S0261517702000687
    • V. Cho A comparison of three different approaches to tourist arrival forecasting Tourism Management 24 3 2003 323 330 (Pubitemid 36901378)
    • (2003) Tourism Management , vol.24 , Issue.3 , pp. 323-330
    • Cho, V.1
  • 7
    • 60249097051 scopus 로고    scopus 로고
    • Effective diagnosis of heart disease through neural networks ensembles
    • R. Das, and I. Turkoglu Effective diagnosis of heart disease through neural networks ensembles Expert Systems with Applications 36 4 2009 7675 7680
    • (2009) Expert Systems with Applications , vol.36 , Issue.4 , pp. 7675-7680
    • Das, R.1    Turkoglu, I.2
  • 11
    • 37249073883 scopus 로고    scopus 로고
    • Ski areas, weather and climate: Time series models for New England case studies
    • DOI 10.1002/joc.1502
    • L.C. Hamilton, and C. Brown Ski areas, weather and climate: Time series models for New England case studies International Journal of Climatology 27 15 2007 2113 2124 (Pubitemid 350268752)
    • (2007) International Journal of Climatology , vol.27 , Issue.15 , pp. 2113-2124
    • Hamilton, L.C.1    Brown, C.2    Keim, B.D.3
  • 13
  • 14
    • 84888342847 scopus 로고    scopus 로고
    • (last accessed February, 2013)
    • < http://rapid-i.com/content/view/181/190/ >, (last accessed February, 2013).
  • 15
    • 84888370779 scopus 로고    scopus 로고
    • last accessed January, 2013
    • http://weather.utah.edu/index.php?runcode=2012110312&t=nam212&r= WE&d=CN, (last accessed January, 2013).
  • 16
    • 84888339471 scopus 로고    scopus 로고
    • last accessed July, 2012
    • < http://www.eia.gov/ >, last accessed July, 2012.
  • 17
    • 84888382226 scopus 로고    scopus 로고
    • last accessed July, 2012
    • < http://www.rita.dot.gov/ >, last accessed July, 2012.
  • 18
    • 84888379886 scopus 로고    scopus 로고
    • last accessed January 2013
    • http://www.wrh.noaa.gov/slc/snow/mtnwx/mtnForecast.php, (last accessed January 2013).
  • 20
    • 34247136893 scopus 로고    scopus 로고
    • Forecasting in short-term planning and management for a casino buffet restaurant
    • C. Hu, and M. Chen Forecasting in short-term planning and management for a casino buffet restaurant Journal of Travel & Tourism Marketing 16 2-3 2004 79 98
    • (2004) Journal of Travel & Tourism Marketing , vol.16 , Issue.23 , pp. 79-98
    • Hu, C.1    Chen, M.2
  • 23
    • 56349136923 scopus 로고    scopus 로고
    • Boosting and measuring the performance of ensembles for a successful database marketing
    • Y. Kim Boosting and measuring the performance of ensembles for a successful database marketing Expert Systems with Applications 36 2, Part 1 2009 2161 2176
    • (2009) Expert Systems with Applications , vol.36 , Issue.2 PART 1 , pp. 2161-2176
    • Kim, Y.1
  • 24
    • 71349086364 scopus 로고    scopus 로고
    • Ensemble with neural networks for bankruptcy prediction
    • M.J. Kim, and D.K. Kang Ensemble with neural networks for bankruptcy prediction Expert Systems with Applications 37 4 2010 3373 3379
    • (2010) Expert Systems with Applications , vol.37 , Issue.4 , pp. 3373-3379
    • Kim, M.J.1    Kang, D.K.2
  • 25
    • 84888369087 scopus 로고    scopus 로고
    • Modeling consumer demand for Vail resorts: A leisure and recreational industry case study
    • Decision Science Institute
    • King, M. A. (2010). Modeling consumer demand for Vail resorts: A leisure and recreational industry case study. In Southeast conference of the decision sciences institute. Wilmington, NC: Decision Science Institute.
    • (2010) Southeast Conference of the Decision Sciences Institute. Wilmington, NC
    • King, M.A.1
  • 26
    • 26044463276 scopus 로고    scopus 로고
    • Neural network forecasting of tourism demand
    • S.C. Kon, and L.W. Turner Neural network forecasting of tourism demand Tourism Economics 11 3 2005 301 328 (Pubitemid 41404499)
    • (2005) Tourism Economics , vol.11 , Issue.3 , pp. 301-328
    • Kon, S.C.1    Turner, L.W.2
  • 28
    • 0034057701 scopus 로고    scopus 로고
    • Back-propagation learning in improving the accuracy of neural network-based tourism demand forecasting
    • DOI 10.1016/S0261-5177(99)00067-9, PII S0261517799000679
    • R. Law Back-propagation learning in improving the accuracy of neural network-based tourism demand forecasting Tourism Management 21 4 2000 331 340 (Pubitemid 30259990)
    • (2000) Tourism Management , vol.21 , Issue.4 , pp. 331-340
    • Law, R.1
  • 29
    • 23444456796 scopus 로고    scopus 로고
    • Recent developments in econometric modeling and forecasting
    • DOI 10.1177/0047287505276594
    • G. Li, and H. Song Recent developments in econometric modeling and forecasting Journal of Travel Research 44 1 2005 82 99 (Pubitemid 41110423)
    • (2005) Journal of Travel Research , vol.44 , Issue.1 , pp. 82-99
    • Li, G.1    Song, H.2    Witt, S.F.3
  • 30
    • 0033044036 scopus 로고    scopus 로고
    • A Meta-Analytic Review of international tourism demand
    • C. Lim A meta-analytic review of international tourism demand Journal of Travel Research 37 3 1999 273 284 (Pubitemid 29240004)
    • (1999) Journal of Travel Research , vol.37 , Issue.3 , pp. 273-284
    • Lim, C.1
  • 31
    • 80052220155 scopus 로고    scopus 로고
    • Comparing classifiers and metaclassifiers advances in data mining
    • P. Perner, Springer Berlin/Heidelberg
    • E. Lozano, and E. Acuña Comparing classifiers and metaclassifiers advances in data mining P. Perner, Applications and theoretical aspects Vol. 6870 2011 Springer Berlin/Heidelberg 56 65
    • (2011) Applications and Theoretical Aspects , vol.6870 , pp. 56-65
    • Lozano, E.1    Acuña, E.2
  • 32
    • 84888358112 scopus 로고    scopus 로고
    • The incredible vanishing vacation: No time for travel
    • D. Luzadder The incredible vanishing vacation: No time for travel Travel Weekly 64 30 2005 18 20
    • (2005) Travel Weekly , vol.64 , Issue.30 , pp. 18-20
    • Luzadder, D.1
  • 33
    • 0033907438 scopus 로고    scopus 로고
    • Aggregation approach to the classification problem using multiple prediction experts
    • DOI 10.1016/S0306-4573(99)00069-2
    • R.L. Major, and C.T. Ragsdale An aggregation approach to the classification problem using multiple prediction experts Information Processing and Management 36 4 2000 683 696 (Pubitemid 30594060)
    • (2000) Information Processing and Management , vol.36 , Issue.4 , pp. 683-696
    • Major, R.L.1    Ragsdale, C.T.2
  • 34
    • 0035480331 scopus 로고    scopus 로고
    • Aggregating expert predictions in a networked environment
    • DOI 10.1016/S0305-0548(00)00037-X, PII S030505480000037X
    • R.L. Major, and C.T. Ragsdale Aggregating expert predictions in a networked environment Computers and Operations Research 28 12 2001 1231 1244 (Pubitemid 32722775)
    • (2001) Computers and Operations Research , vol.28 , Issue.12 , pp. 1231-1244
    • Major, R.L.1    Ragsdale, C.T.2
  • 35
    • 84859423392 scopus 로고    scopus 로고
    • Exploring the behaviour of base classifiers in credit scoring ensembles
    • A.I. Marqués, and V. García Exploring the behaviour of base classifiers in credit scoring ensembles Expert Systems with Applications 39 11 2012 10244 10250
    • (2012) Expert Systems with Applications , vol.39 , Issue.11 , pp. 10244-10250
    • Marqués, A.I.1    García, V.2
  • 38
    • 84888364596 scopus 로고    scopus 로고
    • Montgomery, John October 31
    • Montgomery, John. (2012, October 31). Telephone interview.
    • (2012) Telephone Interview
  • 39
    • 26044462452 scopus 로고    scopus 로고
    • Determinants of tourist arrivals in Africa: A panel data regression analysis
    • W.A. Naude, and A. Saayman Determinants of tourist arrivals in Africa: A panel data regression analysis Tourism Economics 11 3 2005 365 391 (Pubitemid 41404502)
    • (2005) Tourism Economics , vol.11 , Issue.3 , pp. 365-391
    • Naude, W.A.1    Saayman, A.2
  • 41
    • 18144366154 scopus 로고    scopus 로고
    • Evaluating time-series models to forecast the demand for tourism in Singapore
    • C.-O. Oh, and B.J. Morzuch Evaluating time-series models to forecast the demand for tourism in Singapore Journal of Travel Research 43 4 2005 404 413
    • (2005) Journal of Travel Research , vol.43 , Issue.4 , pp. 404-413
    • Oh, C.-O.1    Morzuch, B.J.2
  • 43
    • 27744588529 scopus 로고    scopus 로고
    • An improved neural network model in forecasting arrivals
    • P.F. Pai, and W.C. Hong An improved neural network model in forecasting arrivals Annals of Tourism Research 32 4 2005 1138 1141
    • (2005) Annals of Tourism Research , vol.32 , Issue.4 , pp. 1138-1141
    • Pai, P.F.1    Hong, W.C.2
  • 44
    • 53849126165 scopus 로고    scopus 로고
    • Neural networks and statistical techniques: A review of applications
    • M. Paliwal, and U.A. Kumar Neural networks and statistical techniques: A review of applications Expert Systems with Applications 36 1 2009 2 17
    • (2009) Expert Systems with Applications , vol.36 , Issue.1 , pp. 2-17
    • Paliwal, M.1    Kumar, U.A.2
  • 45
    • 33745933319 scopus 로고    scopus 로고
    • Designing an artificial neural network for forecasting tourism time series
    • DOI 10.1016/j.tourman.2005.05.006, PII S0261517705000555
    • A. Palmer, and J. José Montaño Designing an artificial neural network for forecasting tourism time series Tourism Management 27 5 2006 781 790 (Pubitemid 44054895)
    • (2006) Tourism Management , vol.27 , Issue.5 , pp. 781-790
    • Palmer, A.1    Jose Montano, J.2    Sese, A.3
  • 46
    • 26944480026 scopus 로고    scopus 로고
    • Competition in tourism among the Mediterranean countries
    • DOI 10.1080/00036840500217226
    • V. Patsouratis, and Z. Frangouli Competition in tourism among the Mediterranean countries Applied Economics 37 16 2005 1865 1870 (Pubitemid 41472541)
    • (2005) Applied Economics , vol.37 , Issue.16 , pp. 1865-1870
    • Patsouratis, V.1    Frangouli, Z.2    Anastasopoulos, G.3
  • 47
    • 0036049991 scopus 로고    scopus 로고
    • Perishability, yield management, and cross-product elasticity: A case study of deep discount season passes in the Colorado ski industry
    • R.R. Perdue Perishability, yield management, and cross-product elasticity: A case study of deep discount season passes in the Colorado ski industry Journal of Travel Research 41 1 2002 15
    • (2002) Journal of Travel Research , vol.41 , Issue.1 , pp. 15
    • Perdue, R.R.1
  • 49
    • 33750265200 scopus 로고    scopus 로고
    • Learning and ability to pay: Developing a model to forecast ski tourism
    • G.L. Riddington Learning and ability to pay: Developing a model to forecast ski tourism Journal of Travel & Tourism Marketing 13 1-2 2002 109 124
    • (2002) Journal of Travel & Tourism Marketing , vol.13 , Issue.12 , pp. 109-124
    • Riddington, G.L.1
  • 50
    • 69449097857 scopus 로고    scopus 로고
    • Taxonomy for characterizing ensemble methods in classification tasks: A review and annotated bibliography
    • L. Rokach Taxonomy for characterizing ensemble methods in classification tasks: A review and annotated bibliography Computational Statistics and Data Analysis 53 12 2009 4046 4072
    • (2009) Computational Statistics and Data Analysis , vol.53 , Issue.12 , pp. 4046-4072
    • Rokach, L.1
  • 51
    • 0025448521 scopus 로고
    • The strength of weak learnability
    • R.E. Schapire The strength of weak learnability Machine Learning 5 2 1990 197 227
    • (1990) Machine Learning , vol.5 , Issue.2 , pp. 197-227
    • Schapire, R.E.1
  • 52
    • 58149513387 scopus 로고    scopus 로고
    • Impact of weather on downhill ski lift ticket sales
    • C. Shih, and S. Nicholls Impact of weather on downhill ski lift ticket sales Journal of Travel Research 47 3 2009 359 372
    • (2009) Journal of Travel Research , vol.47 , Issue.3 , pp. 359-372
    • Shih, C.1    Nicholls, S.2
  • 53
    • 36549022027 scopus 로고    scopus 로고
    • Tourism demand modelling and forecasting-A review of recent research
    • DOI 10.1016/j.tourman.2007.07.016, PII S0261517707001707
    • H. Song, and G. Li Tourism demand modelling and forecasting: A review of recent research Tourism Management 29 2 2008 203 220 (Pubitemid 350187645)
    • (2008) Tourism Management , vol.29 , Issue.2 , pp. 203-220
    • Song, H.1    Li, G.2
  • 54
  • 56
    • 79953722212 scopus 로고    scopus 로고
    • AdaBoost ensemble for financial distress prediction: An empirical comparison with data from Chinese listed companies
    • J. Sun, and M.y. Jia AdaBoost ensemble for financial distress prediction: An empirical comparison with data from Chinese listed companies Expert Systems with Applications 38 8 2011 9305 9312
    • (2011) Expert Systems with Applications , vol.38 , Issue.8 , pp. 9305-9312
    • Sun, J.1    Jia, M.Y.2
  • 61
    • 0033429643 scopus 로고    scopus 로고
    • Artificial neural networks versus multiple regression in tourism demand analysis
    • M. Uysal, and M.S.E. Roubi Artificial neural networks versus multiple regression in tourism demand analysis Journal of Travel Research 38 2 1999 111
    • (1999) Journal of Travel Research , vol.38 , Issue.2 , pp. 111
    • Uysal, M.1    Roubi, M.S.E.2
  • 63
    • 0026692226 scopus 로고
    • Stacked generalization
    • D.H. Wolpert Stacked generalization Neural Networks 5 2 1992 241 259
    • (1992) Neural Networks , vol.5 , Issue.2 , pp. 241-259
    • Wolpert, D.H.1
  • 65
    • 84888375897 scopus 로고    scopus 로고
    • Neural network forecasting model as an alternative to OLS regression model for handling messy data
    • J. Yi, and V.R. Prybutok Neural network forecasting model as an alternative to OLS regression model for handling messy data Commerce and Economic Review 17 1 2001 137 158
    • (2001) Commerce and Economic Review , vol.17 , Issue.1 , pp. 137-158
    • Yi, J.1    Prybutok, V.R.2
  • 66
    • 0010864443 scopus 로고    scopus 로고
    • The determinants of planning time in vacation travel
    • DOI 10.1016/0261-5177(95)00115-8
    • A. Zalatan The determinants of planning time in vacation travel Tourism Management 17 2 1996 123 131 (Pubitemid 126402795)
    • (1996) Tourism Management , vol.17 , Issue.2 , pp. 123-131
    • Zalatan, A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.