메뉴 건너뛰기




Volumn 11, Issue 1, 2014, Pages 153-157

Hyperspectral image classification using gaussian mixture models and markov random fields

Author keywords

Gaussian mixture model (GMM); hyperspectral classification; Markov random field (MRF); nonnegative matrix factorization

Indexed keywords

DIMENSIONALITY REDUCTION; GAUSSIAN MIXTURE MODEL; HYPER-SPECTRAL CLASSIFICATION; HYPER-SPECTRAL IMAGERIES; HYPERSPECTRAL IMAGE CLASSIFICATION; MARKOV RANDOM FIELDS; NON-GAUSSIAN STATISTICS; NONNEGATIVE MATRIX FACTORIZATION;

EID: 84888305489     PISSN: 1545598X     EISSN: None     Source Type: Journal    
DOI: 10.1109/LGRS.2013.2250905     Document Type: Article
Times cited : (154)

References (13)
  • 1
    • 35348920168 scopus 로고    scopus 로고
    • Feature selection and classification of hyperspectral images with support vector machines
    • DOI 10.1109/LGRS.2007.905116
    • R. Archibald and G. Fann, "Feature selection and classification of hyperspectral images with support vector machines," IEEE Geosci. Remote Sens. Lett., vol. 4, no. 4, pp. 674-677, Oct. 2007. (Pubitemid 47588053)
    • (2007) IEEE Geoscience and Remote Sensing Letters , vol.4 , Issue.4 , pp. 674-677
    • Archibald, R.1    Fann, G.2
  • 2
    • 33750796618 scopus 로고    scopus 로고
    • Structured Gaussian components for hyperspectral image classification
    • DOI 10.1109/TGRS.2006.880626, 1717733
    • A. Berge and A. H. S. Solberg, "Structured Gaussian components for hyperspectral image classification," IEEE Trans. Geosci. Remote Sens., vol. 44, no. 11, pp. 3386-3396, Nov. 2006. (Pubitemid 44711680)
    • (2006) IEEE Transactions on Geoscience and Remote Sensing , vol.44 , Issue.11 , pp. 3386-3396
    • Berge, A.1    Solberg, A.H.S.2
  • 3
    • 78751697032 scopus 로고    scopus 로고
    • Locality preserving nonnegative matrix factorization
    • Pasadena, CA, USA Jul.
    • D. Cai, X. He, X. Wang, H. Bao, and J. Han, "Locality preserving nonnegative matrix factorization," in Proc. Int. Joint Conf. Artif. Intell., Pasadena, CA, USA, Jul. 2009, pp. 1010-1015.
    • (2009) Proc. Int. Joint Conf. Artif. Intell. , pp. 1010-1015
    • Cai, D.1    He, X.2    Wang, X.3    Bao, H.4    Han, J.5
  • 4
    • 33749237332 scopus 로고    scopus 로고
    • Local Fisher discriminant analysis for supervised dimensionality reduction
    • Pittsburgh, PA, USA Jun.
    • M. Sugiyama, "Local Fisher discriminant analysis for supervised dimensionality reduction," in Proc. Int. Conf. Mach. Learning, Pittsburgh, PA, USA, Jun. 2006, pp. 905-912.
    • (2006) Proc. Int. Conf. Mach. Learning , pp. 905-912
    • Sugiyama, M.1
  • 5
    • 58149131252 scopus 로고    scopus 로고
    • Constrained nonnegative matrix factorization for hyperspectral unmixing
    • Jan.
    • S. Jia and Y. Qian, "Constrained nonnegative matrix factorization for hyperspectral unmixing," IEEE Trans. Geosci. Remote Sens., vol. 47, no. 1, pp. 161-173, Jan. 2009.
    • (2009) IEEE Trans. Geosci. Remote Sens. , vol.47 , Issue.1 , pp. 161-173
    • Jia, S.1    Qian, Y.2
  • 6
    • 13444286179 scopus 로고    scopus 로고
    • Locality preserving projections
    • S. Thrun L. Saul, and B. Scḧolkopf, Eds. Cambridge, MA, USA: MIT Press
    • X. He and P. Niyogi, "Locality preserving projections," in Advances in Neural Information Processing System, S. Thrun, L. Saul, and B. Scḧolkopf, Eds. Cambridge, MA, USA: MIT Press, 2004.
    • (2004) Advances in Neural Information Processing System
    • He, X.1    Niyogi, P.2
  • 7
    • 84859784358 scopus 로고    scopus 로고
    • Localitypreserving dimensionality reduction and classification for hyperspectral image analysis
    • Apr.
    • W. Li, S. Prasad, J. E. Fowler, and L. M. Bruce, "Localitypreserving dimensionality reduction and classification for hyperspectral image analysis," IEEE Trans. Geosci. Remote Sens., vol. 50, no. 4, pp. 1185-1198, Apr. 2012.
    • (2012) IEEE Trans. Geosci. Remote Sens. , vol.50 , Issue.4 , pp. 1185-1198
    • Li, W.1    Prasad, S.2    Fowler, J.E.3    Bruce, L.M.4
  • 8
    • 77958017904 scopus 로고    scopus 로고
    • SVMand MRF-based method for accurate classification of hyperspectral images
    • Oct.
    • Y. Tarabalka, M. Fauvel, J. Chanussot, and J. A. Benediktsson, "SVMand MRF-based method for accurate classification of hyperspectral images," IEEE Geosci. Remote Sens. Lett., vol. 7, no. 4, pp. 736-740, Oct. 2010.
    • (2010) IEEE Geosci. Remote Sens. Lett. , vol.7 , Issue.4 , pp. 736-740
    • Tarabalka, Y.1    Fauvel, M.2    Chanussot, J.3    Benediktsson, J.A.4
  • 9
    • 80052087931 scopus 로고    scopus 로고
    • Spectral-spatial hyperspectral image segmentation using subspace multinomial logistic regression and Markov random fields
    • Mar.
    • J. Li, J. M. Bioucas-Dias, and A. Plaza, "Spectral-spatial hyperspectral image segmentation using subspace multinomial logistic regression and Markov random fields," IEEE Trans. Geosci. Remote Sens., vol. 50, no. 3, pp. 809-823, Mar. 2012.
    • (2012) IEEE Trans. Geosci. Remote Sens. , vol.50 , Issue.3 , pp. 809-823
    • Li, J.1    Bioucas-Dias, J.M.2    Plaza, A.3
  • 10
    • 0000120766 scopus 로고
    • Estimation the dimension of a model
    • Mar.
    • G. Schwarz, "Estimation the dimension of a model," Ann. Statist., vol. 6, no. 2, pp. 461-464, Mar. 1978.
    • (1978) Ann. Statist. , vol.6 , Issue.2 , pp. 461-464
    • Schwarz, G.1
  • 11
    • 57749110900 scopus 로고    scopus 로고
    • A labeling scheme based on Markov random fields and Gaussian mixture models for hyperspectral images
    • Kunming, China Jul.
    • X. Huang and Z. Liao, "A labeling scheme based on Markov random fields and Gaussian mixture models for hyperspectral images," in Proc. 7th Int. Conf. Mach. Learning Cybern., Kunming, China, Jul. 2008, pp. 3619-3624.
    • (2008) Proc. 7th Int. Conf. Mach. Learning Cybern. , pp. 3619-3624
    • Huang, X.1    Liao, Z.2
  • 12
    • 80052307660 scopus 로고    scopus 로고
    • Locality-preserving discriminant analysis in kernel-induced feature spaces for hyperspectral image classification
    • Sep.
    • W. Li, S. Prasad, J. E. Fowler, and L. M. Bruce, "Locality- preserving discriminant analysis in kernel-induced feature spaces for hyperspectral image classification," IEEE Geosci. Remote Sens. Lett., vol. 8, no. 5, pp. 894-898, Sep. 2011.
    • (2011) IEEE Geosci. Remote Sens. Lett. , vol.8 , Issue.5 , pp. 894-898
    • Li, W.1    Prasad, S.2    Fowler, J.E.3    Bruce, L.M.4
  • 13
    • 84873191300 scopus 로고    scopus 로고
    • Locality-preserving discriminant analysis for hyperspectral image classification using local spatial information
    • Munich, Germany, Jul.
    • W. Li, S. Prasad, Z. Ye, J. E. Fowler, and M. Cui, "Locality- preserving discriminant analysis for hyperspectral image classification using local spatial information," in Proc. Int. Geosci. Remote Sens. Symp., Munich, Germany, Jul. 2012, pp. 4134-4137.
    • (2012) Proc. Int. Geosci. Remote Sens. Symp. , pp. 4134-4137
    • Li, W.1    Prasad, S.2    Ye, Z.3    Fowler, J.E.4    Cui, M.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.