-
1
-
-
0030142134
-
Local linear perceptrons for classification
-
Alpaydin E, Jordan M (1996) Local linear perceptrons for classification. IEEE Trans Neural Netw 7(3): 788-792.
-
(1996)
IEEE Trans Neural Netw
, vol.7
, Issue.3
, pp. 788-792
-
-
Alpaydin, E.1
Jordan, M.2
-
3
-
-
48849102758
-
Adapting prediction error estimates for biased complexity selection in high-dimensional bootstrap samples
-
Article 12
-
Binder H, Schumacher M (2008) Adapting prediction error estimates for biased complexity selection in high-dimensional bootstrap samples. Stat Appl Genet Mol Biol 7(1): Article 12.
-
(2008)
Stat Appl Genet Mol Biol
, vol.7
, Issue.1
-
-
Binder, H.1
Schumacher, M.2
-
7
-
-
0033220805
-
On global, local, mixed and neighborhood kernels for support vector machines
-
Brailovsky V, Barzilay O, Shahave R (1999) On global, local, mixed and neighborhood kernels for support vector machines. Pattern Recognit Lett 20: 1183-1190.
-
(1999)
Pattern Recognit Lett
, vol.20
, pp. 1183-1190
-
-
Brailovsky, V.1
Barzilay, O.2
Shahave, R.3
-
8
-
-
0035478854
-
Random forests
-
Breiman L (2001) Random forests. Mach Learn 45(1): 5-32.
-
(2001)
Mach Learn
, vol.45
, Issue.1
, pp. 5-32
-
-
Breiman, L.1
-
11
-
-
77649248407
-
Efficient algorithm for localized support vector machine
-
Cheng H, Tan PN, Jin R (2010) Efficient algorithm for localized support vector machine. IEEE Trans Knowl Data Eng 22(4): 537-549.
-
(2010)
IEEE Trans Knowl Data Eng
, vol.22
, Issue.4
, pp. 537-549
-
-
Cheng, H.1
Tan, P.N.2
Jin, R.3
-
13
-
-
84879587437
-
Localized linear discriminant analysis
-
R. Decker and H. Lenz (Eds.), Berlin: Springer
-
Czogiel I, Luebke K, Zentgraf M, Weihs C (2007) Localized linear discriminant analysis. In: Decker R, Lenz H (eds) Advances in data analysis, Studies in Classification, data analysis, and knowledge organization, vol 34. Springer, Berlin, pp 133-140.
-
(2007)
Advances in Data Analysis, Studies in Classification, Data Analysis, and Knowledge Organization
, vol.34
, pp. 133-140
-
-
Czogiel, I.1
Luebke, K.2
Zentgraf, M.3
Weihs, C.4
-
15
-
-
2942519065
-
-
TU Wien
-
Dimitriadou E, Hornik K, Leisch F, Meyer D, Weingessel A (2010) e1071: Misc functions of the Department of Statistics (e1071), TU Wien.
-
(2010)
E1071: Misc functions of the Department of Statistics (e1071)
-
-
Dimitriadou, E.1
Hornik, K.2
Leisch, F.3
Meyer, D.4
Weingessel, A.5
-
18
-
-
0033372875
-
The significance of border training patterns in classification by a feedforward neural network using back propagation learning
-
Foody G (1999) The significance of border training patterns in classification by a feedforward neural network using back propagation learning. Int J Remote Sens 20(18): 3549-3562.
-
(1999)
Int J Remote Sens
, vol.20
, Issue.18
, pp. 3549-3562
-
-
Foody, G.1
-
21
-
-
0037598692
-
Local versus global models for classification problems: fitting models where it matters
-
Hand DJ, Vinciotti V (2003) Local versus global models for classification problems: fitting models where it matters. Am Stat 57(2): 124-131.
-
(2003)
Am Stat
, vol.57
, Issue.2
, pp. 124-131
-
-
Hand, D.J.1
Vinciotti, V.2
-
22
-
-
0030164799
-
Discriminant adaptive nearest neighbor classification
-
Hastie T, Tibshirani R (1996) Discriminant adaptive nearest neighbor classification. IEEE Trans Pattern Anal Mach Intell 18(6): 607-616.
-
(1996)
IEEE Trans Pattern Anal Mach Intell
, vol.18
, Issue.6
, pp. 607-616
-
-
Hastie, T.1
Tibshirani, R.2
-
23
-
-
0003684449
-
-
Springer Series in Statistics, Springer, New York
-
Hastie T, Tibshirani R, Friedman J (2009) The elements of statistical learning. Data mining, inference, and prediction. Springer Series in Statistics, Springer, New York
-
(2009)
The elements of statistical learning. Data mining, inference, and prediction
-
-
Hastie, T.1
Tibshirani, R.2
Friedman, J.3
-
24
-
-
57049096099
-
-
S original by Hastie T, Tibshirani R, Original R port by Leisch F, Hornik K, Ripley B (2009) mda: Mixture and flexible discriminant analysis.
-
(2009)
Mda: Mixture and flexible discriminant analysis
-
-
Original, S.1
Hastie, T.2
Tibshirani, R.3
Original, R.4
Leisch, F.5
Hornik, K.6
Ripley, B.7
-
26
-
-
0141907311
-
Classification trees with bivariate linear discriminant node models
-
Kim H, Loh WY (2003) Classification trees with bivariate linear discriminant node models. J Comput Graph Stat 12: 512-530.
-
(2003)
J Comput Graph Stat
, vol.12
, pp. 512-530
-
-
Kim, H.1
Loh, W.Y.2
-
31
-
-
0345040873
-
Classification and regression by randomForest
-
Liaw A, Wiener M (2002) Classification and regression by randomForest. R News 2(3): 18-22.
-
(2002)
R News
, vol.2
, Issue.3
, pp. 18-22
-
-
Liaw, A.1
Wiener, M.2
-
32
-
-
0033309093
-
Sample selection via clustering to construct support vector-like classifiers
-
Lyhyaoui A, Martinez M, Mora I, Vaquez M, Sancho J, Figueiras-Vidal A (1999) Sample selection via clustering to construct support vector-like classifiers. IEEE Trans Neural Netw 10(6): 1474-1481.
-
(1999)
IEEE Trans Neural Netw
, vol.10
, Issue.6
, pp. 1474-1481
-
-
Lyhyaoui, A.1
Martinez, M.2
Mora, I.3
Vaquez, M.4
Sancho, J.5
Figueiras-Vidal, A.6
-
33
-
-
0042847140
-
Inference for the generalization error
-
Nadeau C, Bengio Y (2003) Inference for the generalization error. Mach Learn 52(3): 239-281.
-
(2003)
Mach Learn
, vol.52
, Issue.3
, pp. 239-281
-
-
Nadeau, C.1
Bengio, Y.2
-
35
-
-
0032001170
-
Learning in the real world
-
Saitta L, Neri F (1998) Learning in the "real world". Mach Learn 30(2-3): 133-163.
-
(1998)
Mach Learn
, vol.30
, Issue.2-3
, pp. 133-163
-
-
Saitta, L.1
Neri, F.2
-
36
-
-
84888216718
-
Bias-variance analysis of local classification methods
-
W. A. Gaul, A. Geyer-Schulz, L. Schmidt-Thieme, and J. Kunze (Eds.), Berlin: Springer
-
Schiffner J, Bischl B, Weihs C (2012) Bias-variance analysis of local classification methods. In: Gaul WA, Geyer-Schulz A, Schmidt-Thieme L, Kunze J (eds) Challenges at the interface of data analysis, computer science, and optimization, Studies in Classification, data analysis, and knowledge organization, vol 43. Springer, Berlin, pp 49-57.
-
(2012)
Challenges at the Interface of Data Analysis, Computer Science, and Optimization, Studies in Classification, Data Analysis, and Knowledge Organization
, vol.43
, pp. 49-57
-
-
Schiffner, J.1
Bischl, B.2
Weihs, C.3
-
39
-
-
77954672890
-
Fast and scalable local kernel machines
-
Segata N, Blanzieri E (2010a) Fast and scalable local kernel machines. J Mach Learn Res 11: 1883-1926.
-
(2010)
J Mach Learn Res
, vol.11
, pp. 1883-1926
-
-
Segata, N.1
Blanzieri, E.2
-
40
-
-
84888220610
-
Operators for transforming kernels into quasi-local kernels that improve SVM accuracy
-
Segata N, Blanzieri E (2010b) Operators for transforming kernels into quasi-local kernels that improve SVM accuracy. J Intell Inform Syst 1-32.
-
(2010)
J Intell Inform Syst
, pp. 1-32
-
-
Segata, N.1
Blanzieri, E.2
-
41
-
-
84888212530
-
Classification: distance-based algorithms
-
M. Berry and M. Browne (Eds.), Singapore: World Scientific Publishing
-
Shen Z (2006) Classification: distance-based algorithms. In: Berry M, Browne M (eds) Lecture notes in data mining. World Scientific Publishing, Singapore.
-
(2006)
Lecture Notes in Data Mining
-
-
Shen, Z.1
-
42
-
-
84888219096
-
Pattern selection for support vector classifiers
-
H. Yin, N. Allinson, R. Freeman, J. Keane, and S. Hubbard (Eds.), Berlin: Springer
-
Shin H, Cho S (2002) Pattern selection for support vector classifiers. In: Yin H, Allinson N, Freeman R, Keane J, Hubbard S (eds) Intelligent data engineering and automated learning-IDEAL 2002, Lecture Notes in Computer Science, vol 2412. Springer, Berlin, pp 97-103.
-
(2002)
Intelligent Data Engineering and Automated Learning-IDEAL 2002, Lecture Notes in Computer Science
, vol.2412
, pp. 97-103
-
-
Shin, H.1
Cho, S.2
-
45
-
-
0346325856
-
Is the UCI repository useful for data mining?
-
Soares C (2003) Is the UCI repository useful for data mining? Prog Artif Intell 2902: 209-223.
-
(2003)
Prog Artif Intell
, vol.2902
, pp. 209-223
-
-
Soares, C.1
-
46
-
-
34249086815
-
Dimensionality reduction of multimodal labeled data by local Fisher discriminant analysis
-
Sugiyama M (2007) Dimensionality reduction of multimodal labeled data by local Fisher discriminant analysis. J Mach Learn Res 8: 1027-1061.
-
(2007)
J Mach Learn Res
, vol.8
, pp. 1027-1061
-
-
Sugiyama, M.1
-
47
-
-
49049086295
-
Local modelling in classification
-
Perner P (ed), Lecture Notes in Computer Science, Springer, Berlin
-
Szepannek G, Schiffner J, Wilson J, Weihs C (2008) Local modelling in classification. In: Perner P (ed) Advances in data mining. Medical applications, e-commerce, marketing, and theoretical aspects, Lecture Notes in Computer Science, vol 5077. Springer, Berlin, pp 153-164.
-
(2008)
Advances in data mining. Medical applications, e-commerce, marketing, and theoretical aspects
, vol.5077
, pp. 153-164
-
-
Szepannek, G.1
Schiffner, J.2
Wilson, J.3
Weihs, C.4
-
51
-
-
33746454738
-
klaR analyzing german business cycles
-
D. Baier, R. Decker, and L. Schmidt-Thieme (Eds.), Berlin: Springer
-
Weihs C, Ligges U, Luebke K, Raabe N (2005) klaR analyzing german business cycles. In: Baier D, Decker R, Schmidt-Thieme L (eds) Data analysis and decision support, Studies in Classification, data analysis, and knowledge organization, vol 30. Springer, Berlin, pp 335-343.
-
(2005)
Data Analysis and Decision Support, Studies in Classification, Data Analysis, and Knowledge Organization
, vol.30
, pp. 335-343
-
-
Weihs, C.1
Ligges, U.2
Luebke, K.3
Raabe, N.4
-
53
-
-
35748956765
-
A local boosting algorithm for solving classification problems
-
Zhang CX, Zhang JS (2008) A local boosting algorithm for solving classification problems. Comput Stat Data Anal 52: 1928-1941.
-
(2008)
Comput Stat Data Anal
, vol.52
, pp. 1928-1941
-
-
Zhang, C.X.1
Zhang, J.S.2
-
55
-
-
26844473919
-
Mixtures of kernels for SVM modeling
-
L. Wang, K. Chen, and Y. Ong (Eds.), Berlin: Springer
-
Zhu Yf, Tian Lf, Mao Zy, Wei LfT (2005) Mixtures of kernels for SVM modeling. In: Wang L, Chen K, Ong Y (eds) Advances in natural computation, Lecture Notes in Computer Science, vol 3610. Springer, Berlin, pp 601-607.
-
(2005)
Advances in Natural Computation, Lecture Notes in Computer Science
, vol.3610
, pp. 601-607
-
-
Zhu, Y.1
Tian, L.2
Mao, Z.3
Wei, L.T.4
|