-
1
-
-
11844278458
-
Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets
-
Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell. 2005;120:15-20.
-
(2005)
Cell
, vol.120
, pp. 15-20
-
-
Lewis, B.P.1
Burge, C.B.2
Bartel, D.P.3
-
2
-
-
4644309196
-
The functions of animal microRNAs
-
Ambros V. The functions of animal microRNAs. Nature. 2004;431:350-355.
-
(2004)
Nature
, vol.431
, pp. 350-355
-
-
Ambros, V.1
-
3
-
-
78651293534
-
Griffiths-Jones S. MiRBase: Integrating microRNA annotation and deep-sequencing data
-
Kozomara A, Griffiths-Jones S. miRBase: Integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res. 2011;39:D152-D157.
-
(2011)
Nucleic Acids Res
, vol.39
-
-
Kozomara, A.1
-
4
-
-
84857506097
-
MicroRNAs in autoimmunity and inflammatory bowel disease: Crucial regulators in immune response
-
Iborra M, Bernuzzi F, Invernizzi P, et al. MicroRNAs in autoimmunity and inflammatory bowel disease: crucial regulators in immune response. Autoimmun Rev. 2012;11:305-314.
-
(2012)
Autoimmun Rev
, vol.11
, pp. 305-314
-
-
Iborra, M.1
Bernuzzi, F.2
Invernizzi, P.3
-
5
-
-
55249119513
-
MicroRNAs are differentially expressed in ulcerative colitis and alter expression of macrophage inflammatory peptide-2 alpha
-
e24
-
Wu F, Zikusoka M, Trindade A, et al. MicroRNAs are differentially expressed in ulcerative colitis and alter expression of macrophage inflammatory peptide-2 alpha. Gastroenterology. 2008;135:1624-1635.e24.
-
(2008)
Gastroenterology
, vol.135
, pp. 1624-1635
-
-
Wu, F.1
Zikusoka, M.2
Trindade, A.3
-
6
-
-
78649231641
-
Identification of microRNAs associated with ileal and colonic Crohns disease
-
Wu F, Zhang S, Dassopoulos T, et al. Identification of microRNAs associated with ileal and colonic Crohns disease. Inflamm Bowel Dis. 2010; 16:1729-1738.
-
(2010)
Inflamm Bowel Dis
, vol.16
, pp. 1729-1738
-
-
Wu, F.1
Zhang, S.2
Dassopoulos, T.3
-
7
-
-
78650119948
-
Peripheral blood microRNAs distinguish active ulcerative colitis and Crohns disease
-
Wu F, Guo NJ, Tian H, et al. Peripheral blood microRNAs distinguish active ulcerative colitis and Crohns disease. Inflamm Bowel Dis. 2011;17:241-250.
-
(2011)
Inflamm Bowel Dis
, vol.17
, pp. 241-250
-
-
Wu, F.1
Guo, N.J.2
Tian, H.3
-
8
-
-
77954382780
-
Mir-17-92, a cluster of miRNAs in the midst of the cancer network
-
Olive V, Jiang I, He L. mir-17-92, a cluster of miRNAs in the midst of the cancer network. Int J Biochem Cell Biol. 2010;42:1348-1354.
-
(2010)
Int J Biochem Cell Biol
, vol.42
, pp. 1348-1354
-
-
Olive, V.1
Jiang, I.2
He, L.3
-
10
-
-
62949091373
-
Autophagy: A lysosomal degradation pathway with a central role in health and disease
-
Eskelinen EL, Saftig P. Autophagy: A lysosomal degradation pathway with a central role in health and disease. Biochim Biophys Acta. 2009;1793:664-673.
-
(2009)
Biochim Biophys Acta
, vol.1793
, pp. 664-673
-
-
Eskelinen, E.L.1
Saftig, P.2
-
11
-
-
33846627302
-
A genome-wide association scan of nonsynonymous SNPs identifies a susceptibility variant for Crohn disease in ATG16L1
-
Hampe J, Franke A, Rosenstiel P, et al. A genome-wide association scan of nonsynonymous SNPs identifies a susceptibility variant for Crohn disease in ATG16L1. Nat Genet. 2007;39:207-211.
-
(2007)
Nat Genet
, vol.39
, pp. 207-211
-
-
Hampe, J.1
Franke, A.2
Rosenstiel, P.3
-
12
-
-
34548163868
-
Confirmation of the role of ATG16L1 as a Crohns disease susceptibility gene
-
Cummings JR, Cooney R, Pathan S, et al. Confirmation of the role of ATG16L1 as a Crohns disease susceptibility gene. Inflamm Bowel Dis. 2007;13:941-946.
-
(2007)
Inflamm Bowel Dis
, vol.13
, pp. 941-946
-
-
Cummings, J.R.1
Cooney, R.2
Pathan, S.3
-
13
-
-
80051550866
-
Crohns disease-associated ATG16L1 polymorphism modulates pro-inflammatory cytokine responses selectively upon activation of NOD2
-
Plantinga TS, Crisan TO, Oosting M, et al. Crohns disease-associated ATG16L1 polymorphism modulates pro-inflammatory cytokine responses selectively upon activation of NOD2. Gut. 2011;60:1229-1235.
-
(2011)
Gut
, vol.60
, pp. 1229-1235
-
-
Plantinga, T.S.1
Crisan, T.O.2
Oosting, M.3
-
14
-
-
56249090667
-
Loss of the autophagy protein Atg16L1 enhances endotoxin-induced IL-1beta production
-
Saitoh T, Fujita N, Jang MH, et al. Loss of the autophagy protein Atg16L1 enhances endotoxin-induced IL-1beta production. Nature. 2008;456:264-268.
-
(2008)
Nature
, vol.456
, pp. 264-268
-
-
Saitoh, T.1
Fujita, N.2
Jang, M.H.3
-
15
-
-
56249135538
-
A key role for autophagy and the autophagy gene Atg16l1 in mouse and human intestinal Paneth cells
-
Cadwell K, Liu JY, Brown SL, et al. A key role for autophagy and the autophagy gene Atg16l1 in mouse and human intestinal Paneth cells. Nature. 2008;456:259-263.
-
(2008)
Nature
, vol.456
, pp. 259-263
-
-
Cadwell, K.1
Liu, J.Y.2
Brown, S.L.3
-
16
-
-
77953904042
-
Virus-plus-susceptibility gene interaction determines Crohns disease gene Atg16L1 phenotypes in intestine
-
Cadwell K, Patel KK, Maloney NS, et al. Virus-plus-susceptibility gene interaction determines Crohns disease gene Atg16L1 phenotypes in intestine. Cell. 2010;141:1135-1145.
-
(2010)
Cell
, vol.141
, pp. 1135-1145
-
-
Cadwell, K.1
Patel, K.K.2
Maloney, N.S.3
-
17
-
-
77957682295
-
ATG16L1 and NOD2 interact in an autophagy-dependent antibacterial pathway implicated in Crohns disease pathogenesis
-
41.e1-e2
-
Homer CR, Richmond AL, Rebert NA, et al. ATG16L1 and NOD2 interact in an autophagy-dependent antibacterial pathway implicated in Crohns disease pathogenesis. Gastroenterology. 2010;139:1630-1641, 41.e1-e2.
-
(2010)
Gastroenterology
, vol.139
, pp. 1630-1641
-
-
Homer, C.R.1
Richmond, A.L.2
Rebert, N.A.3
-
19
-
-
79151474603
-
Autophagy in the intestinal epithelium reduces endotoxin-induced inflammatory responses by inhibiting NF-kappaB activation
-
Fujishima Y, Nishiumi S, Masuda A, et al. Autophagy in the intestinal epithelium reduces endotoxin-induced inflammatory responses by inhibiting NF-kappaB activation. Arch Biochem Biophys. 2011;506: 223-235.
-
(2011)
Arch Biochem Biophys
, vol.506
, pp. 223-235
-
-
Fujishima, Y.1
Nishiumi, S.2
Masuda, A.3
-
20
-
-
79951650004
-
Measurement of autophagy in cells and tissues
-
Tanida I, Waguri S. Measurement of autophagy in cells and tissues. Methods Mol Biol. 2010;648:193-214.
-
(2010)
Methods Mol Biol
, vol.648
, pp. 193-214
-
-
Tanida, I.1
Waguri, S.2
-
21
-
-
78751672975
-
Autophagy in immunity and inflammation
-
Levine B, Mizushima N, Virgin HW. Autophagy in immunity and inflammation. Nature. 2011;469:323-335.
-
(2011)
Nature
, vol.469
, pp. 323-335
-
-
Levine, B.1
Mizushima, N.2
Virgin, H.W.3
-
22
-
-
69449097865
-
Regulation of autophagy by a beclin 1-targeted microRNA, miR-30a, in cancer cells
-
Zhu H, Wu H, Liu X, et al. Regulation of autophagy by a beclin 1-targeted microRNA, miR-30a, in cancer cells. Autophagy. 2009;5:816-823.
-
(2009)
Autophagy
, vol.5
, pp. 816-823
-
-
Zhu, H.1
Wu, H.2
Liu, X.3
-
23
-
-
84868627011
-
MicroRNA regulation of autophagy
-
Frankel LB, Lund AH. MicroRNA regulation of autophagy. Carcinogenesis. 2012;33:2018-2025.
-
(2012)
Carcinogenesis
, vol.33
, pp. 2018-2025
-
-
Frankel, L.B.1
Lund, A.H.2
-
24
-
-
79959569726
-
The microRNA cluster miR-106b;25 regulates adult neural stem/progenitor cell proliferation and neuronal differentiation
-
Brett JO, Renault VM, Rafalski VA, et al. The microRNA cluster miR-106b;25 regulates adult neural stem/progenitor cell proliferation and neuronal differentiation. Aging (Albany NY). 2011;3:108-124.
-
(2011)
Aging (Albany NY)
, vol.3
, pp. 108-124
-
-
Brett, J.O.1
Renault, V.M.2
Rafalski, V.A.3
-
25
-
-
65249155995
-
Posttranscriptional regulation of interleukin-10 expression by hsa-miR-106a
-
Sharma A, Kumar M, Aich J, et al. Posttranscriptional regulation of interleukin-10 expression by hsa-miR-106a. Proc Natl Acad Sci U S A. 2009;106:5761-5766.
-
(2009)
Proc Natl Acad Sci U S A
, vol.106
, pp. 5761-5766
-
-
Sharma, A.1
Kumar, M.2
Aich, J.3
-
26
-
-
84864576359
-
Antagonism of mmu-miR-106a attenuates asthma features in allergic murine model
-
Sharma A, Kumar M, Ahmad T, et al. Antagonism of mmu-miR-106a attenuates asthma features in allergic murine model. J Appl Physiol. 2012; 113:459-464.
-
(2012)
J Appl Physiol
, vol.113
, pp. 459-464
-
-
Sharma, A.1
Kumar, M.2
Ahmad, T.3
-
27
-
-
39749143354
-
Targeted deletion reveals essential and overlapping functions of the miR-17 through 92 family of miRNA clusters
-
Ventura A, Young AG, Winslow MM, et al. Targeted deletion reveals essential and overlapping functions of the miR-17 through 92 family of miRNA clusters. Cell. 2008;132:875-886.
-
(2008)
Cell
, vol.132
, pp. 875-886
-
-
Ventura, A.1
Young, A.G.2
Winslow, M.M.3
-
28
-
-
79954512423
-
Differential expression of micro-RNAs in tumors from chronically inflamed or genetic (APC(Min/+)) models of colon cancer
-
Necela BM, Carr JM, Asmann YW, et al. Differential expression of micro-RNAs in tumors from chronically inflamed or genetic (APC(Min/+)) models of colon cancer. PLoS One. 2011;6:e18501.
-
(2011)
PLoS One
, vol.6
-
-
Necela, B.M.1
Carr, J.M.2
Asmann, Y.W.3
-
29
-
-
79960996763
-
MiR-17/20/93/106 promote hematopoietic cell expansion by targeting sequestosome 1-regulated pathways in mice
-
Meenhuis A, van Veelen PA, de Looper H, et al. MiR-17/20/93/106 promote hematopoietic cell expansion by targeting sequestosome 1-regulated pathways in mice. Blood. 2011;118:916-925.
-
(2011)
Blood
, vol.118
, pp. 916-925
-
-
Meenhuis, A.1
Van Veelen, P.A.2
De Looper, H.3
-
30
-
-
84865326329
-
MiR-20a and miR-106b negatively regulate autophagy induced by leucine deprivation via suppression of ULK1 expression in C2C12 myoblasts
-
Wu H, Wang F, Hu S, et al. MiR-20a and miR-106b negatively regulate autophagy induced by leucine deprivation via suppression of ULK1 expression in C2C12 myoblasts. Cell Signal. 2012;24:2179-2186.
-
(2012)
Cell Signal
, vol.24
, pp. 2179-2186
-
-
Wu, H.1
Wang, F.2
Hu, S.3
-
31
-
-
65249146132
-
The miR-106b-25 polycistron, activated by genomic amplification, functions as an oncogene by suppressing p21 and Bim
-
Kan T, Sato F, Ito T, et al. The miR-106b-25 polycistron, activated by genomic amplification, functions as an oncogene by suppressing p21 and Bim. Gastroenterology. 2009;136:1689-1700.
-
(2009)
Gastroenterology
, vol.136
, pp. 1689-1700
-
-
Kan, T.1
Sato, F.2
Ito, T.3
-
32
-
-
79251644886
-
The microbe-derived short chain fatty acid butyrate targets miRNA-dependent p21 gene expression in human colon cancer
-
Hu S, Dong TS, Dalal SR, et al. The microbe-derived short chain fatty acid butyrate targets miRNA-dependent p21 gene expression in human colon cancer. PLoS One. 2011;6:e16221.
-
(2011)
PLoS One
, vol.6
-
-
Hu, S.1
Dong, T.S.2
Dalal, S.R.3
-
33
-
-
84876400581
-
MicroRNA-224 negatively regulates p21 expression during late neoplastic progression in inflammatory bowel disease
-
Olaru AV, Yamanaka S, Vazquez C, et al. MicroRNA-224 negatively regulates p21 expression during late neoplastic progression in inflammatory bowel disease. Inflamm Bowel Dis. 2013;19:471-480.
-
(2013)
Inflamm Bowel Dis
, vol.19
, pp. 471-480
-
-
Olaru, A.V.1
Yamanaka, S.2
Vazquez, C.3
-
34
-
-
34250805982
-
MicroRNA targeting specificity in mammals: Determinants beyond seed pairing
-
Grimson A, Farh KK, Johnston WK, et al. MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Mol Cell. 2007;27:91-105.
-
(2007)
Mol Cell
, vol.27
, pp. 91-105
-
-
Grimson, A.1
Farh, K.K.2
Johnston, W.K.3
|