-
1
-
-
84957069091
-
Naive (bayes) at forty: The independence assumption in information retrieval
-
D.D. Lewis, "Naive (Bayes) at Forty: The Independence Assumption in Information Retrieval," Proc. European Conf. Machine Learning (ECML), pp. 4-15, 1998.
-
(1998)
Proc. European Conf. Machine Learning (ECML)
, pp. 4-15
-
-
Lewis, D.D.1
-
3
-
-
0000636553
-
Text categorization with support vector machines: Learning with many relevant features
-
T. Joachims, "Text Categorization with Support Vector Machines: Learning with Many Relevant Features," Proc. European Conf. Machine Learning (ECML '98), 1998.
-
(1998)
Proc. European Conf. Machine Learning (ECML '98)
-
-
Joachims, T.1
-
4
-
-
85149612939
-
Fast effective rule induction
-
Software Downloaded from
-
W.W. Cohen, "Fast Effective Rule Induction," Proc. 12th Int'l Conf. Machine Learning, Software Downloaded from http://www.cs.cmu.edu/~wcohen, pp. 115-123, 1995.
-
(1995)
Proc. 12th Int'l Conf. Machine Learning
, pp. 115-123
-
-
Cohen, W.W.1
-
5
-
-
37549058066
-
A lazy approach to associative classification
-
Feb
-
E. Baralis, S. Chiusano, and P. Garza, "A Lazy Approach to Associative Classification," IEEE Trans. Knowledge and Data Eng., vol. 20, no. 2, pp. 156-171, http://dbdmg.polito.it/twiki/bin/view/Public/L3, Feb. 2008.
-
(2008)
IEEE Trans. Knowledge and Data Eng.
, vol.20
, Issue.2
, pp. 156-171
-
-
Baralis, E.1
Chiusano, S.2
Garza, P.3
-
7
-
-
0031269184
-
On the optimality of the simple bayesian classifier under zero-one loss
-
P. Domingos and M.J. Pazzani, "On the Optimality of the Simple Bayesian Classifier under Zero-One Loss," Machine Learning, vol. 29, no. 2/3, pp. 103-130, 1997. (Pubitemid 127510035)
-
(1997)
Machine Learning
, vol.29
, Issue.2-3
, pp. 103-130
-
-
Domingos, P.1
Pazzani, M.2
-
9
-
-
70349337297
-
A novel bayes model: Hidden naive bayes
-
Oct
-
L. Jiang, H. Zhang, and Z. Cai, "A Novel Bayes Model: Hidden Naive Bayes," IEEE Trans. Knowledge and Data Eng., vol. 21, no. 10, pp. 1361-1371, Oct. 2009.
-
(2009)
IEEE Trans. Knowledge and Data Eng.
, vol.21
, Issue.10
, pp. 1361-1371
-
-
Jiang, L.1
Zhang, H.2
Cai, Z.3
-
12
-
-
0000956655
-
Approximating discrete probability distributions to reduce storage requirements
-
P. Lewis, "Approximating Discrete Probability Distributions to Reduce Storage Requirements," Information and Control, vol. 2, pp. 214-225, 1959.
-
(1959)
Information and Control
, vol.2
, pp. 214-225
-
-
Lewis, P.1
-
13
-
-
0017802755
-
Statistics of multidimensional contingency tables and the GUHA method
-
T. Havranek, "Statistics of Multidimensional Contingency Tables and the Guha Method," Int'l J. Man-Machine Studies, vol. 10, no. 1, pp. 87-93, http://www.sciencedirect.com/science/article/B6WGS-4T73MHH-C/2/194a7789 7d60880645b1e515419cba83, 1978. (Pubitemid 8318146)
-
(1978)
International Journal of Man-Machine Studies
, vol.10
, Issue.1
, pp. 87-93
-
-
Havranek, T.1
-
14
-
-
11944275853
-
Information theory and statistical mechanics. II
-
Oct
-
E.T. Jaynes, "Information Theory and Statistical Mechanics. II," Physics Rev., vol. 108, no. 2, pp. 171-190, Oct. 1957.
-
(1957)
Physics Rev.
, vol.108
, Issue.2
, pp. 171-190
-
-
Jaynes, E.T.1
-
15
-
-
2442535151
-
Survey of multi-objective optimization methods for engineering
-
Apr
-
R.T. Marler and J.S. Arora, "Survey of Multi-Objective Optimization Methods for Engineering," Structural and Multidisciplinary Optimization, vol. 26, no. 6, pp. 369-395, http://dx.doi.org/10.1]007/s00158-003-0368-6, Apr. 2004.
-
(2004)
Structural and Multidisciplinary Optimization
, vol.26
, Issue.6
, pp. 369-395
-
-
Marler, R.T.1
Arora, J.S.2
-
16
-
-
78149250319
-
Dynamic lexicographic approach for heuristic multi-objective optimization
-
J. Castro-Gutierrez, D. Landa-Silva, and J. Moreno-Perez, "Dynamic Lexicographic Approach for Heuristic Multi-Objective Optimization," Proc. Workshop Intelligent Metaheuristics for Logistic Planning (CAEPIA-TTIA '09), pp. 153-163, 2010.
-
(2010)
Proc. Workshop Intelligent Metaheuristics for Logistic Planning (CAEPIA-TTIA '09)
, pp. 153-163
-
-
Castro-Gutierrez, J.1
Landa-Silva, D.2
Moreno-Perez, J.3
-
17
-
-
0031276011
-
Bayesian network classifiers
-
N. Friedman, D. Geiger, M. Goldszmidt, G. Provan, P. Langley, and P. Smyth, "Bayesian Network Classifiers," Machine Learning, vol. 29, pp. 131-163, 1997. (Pubitemid 127510036)
-
(1997)
Machine Learning
, vol.29
, Issue.2-3
, pp. 131-163
-
-
Friedman, N.1
Geiger, D.2
Goldszmidt, M.3
-
20
-
-
38049008532
-
Scaling up the accuracy of bayesian network classifiers by M-Estimate
-
L. Jiang, D. Wang, and Z. Cai, "Scaling up the Accuracy of Bayesian Network Classifiers by M-Estimate," Proc. Int'l Conf. Intelligent Computing (ICIC), vol. 2, pp. 475-484, 2007.
-
(2007)
Proc. Int'l Conf. Intelligent Computing (ICIC)
, vol.2
, pp. 475-484
-
-
Jiang, L.1
Wang, D.2
Cai, Z.3
-
21
-
-
84974710130
-
Improving an association rule based classifier
-
B. Liu, Y. Ma, and C.K. Wong, "Improving an Association Rule Based Classifier," Proc. Fourth European Conf. Principles Data Mining and Knowledge Discovery, pp. 504-509, 2000.
-
(2000)
Proc. Fourth European Conf. Principles Data Mining and Knowledge Discovery
, pp. 504-509
-
-
Liu, B.1
Ma, Y.2
Wong, C.K.3
-
24
-
-
84904506139
-
MLC++: A machine learning library in c++
-
R. Kohavi, G. John, R. Long, D. Manley, and K. Pfleger, "MLC++: A Machine Learning Library in c++," Proc. Sixth Int'l Conf. Tools with Artificial Intelligence, pp. 740-743, 1994.
-
(1994)
Proc. Sixth Int'l Conf. Tools with Artificial Intelligence
, pp. 740-743
-
-
Kohavi, R.1
John, G.2
Long, R.3
Manley, D.4
Pfleger, K.5
-
25
-
-
84887959000
-
-
IBM, http://www.almaden.ibm.com
-
IBM, "IBM Quest Synthetic Data Generation Code," http://www.almaden.ibm.com/, http://www.almaden.ibm.com/, 2013.
-
(2013)
IBM Quest Synthetic Data Generation Code
-
-
-
27
-
-
14844351034
-
Not so naive Bayes: Aggregating one-dependence estimators
-
DOI 10.1007/s10994-005-4258-6
-
G.I. Webb, J.R. Boughton, and Z. Wang, "Not so Naive Bayes: Aggregating One-Dependence Estimators," Machine Learning, vol. 58, no. 1, pp. 5-24, 2005. (Pubitemid 40356736)
-
(2005)
Machine Learning
, vol.58
, Issue.1
, pp. 5-24
-
-
Webb, G.I.1
Boughton, J.R.2
Wang, Z.3
-
28
-
-
0034301677
-
Lazy learning of bayesian rules
-
Z. Zheng and G.I. Webb, "Lazy Learning of Bayesian Rules," Machine Learning, vol. 41, no. 1, pp. 53-84, 2000.
-
(2000)
Machine Learning
, vol.41
, Issue.1
, pp. 53-84
-
-
Zheng, Z.1
Webb, G.I.2
-
29
-
-
84974698754
-
A study on the performance of large bayes classifier
-
D. Meretakis, H. Lu, and B. Wüthrich, "A Study on the Performance of Large Bayes Classifier," Proc. European Conf. Machine Learning (ECML), pp. 271-279, 2000.
-
(2000)
Proc. European Conf. Machine Learning (ECML)
, pp. 271-279
-
-
Meretakis, D.1
Lu, H.2
Wüthrich, B.3
-
30
-
-
0011748808
-
-
J. Li, G. Dong, K. Ramamohanaro, and L. Wong, "Deeps: A New Instance-Based Discovery and Classification System," citeseer.ist.psu.edu/ li01deeps.html, 2001.
-
(2001)
Deeps: A New Instance-Based Discovery and Classification System
-
-
Li, J.1
Dong, G.2
Ramamohanaro, K.3
Wong, L.4
-
31
-
-
78149313084
-
CMAR: Accurate and efficient classification based on multiple class-Association rules
-
W. Li, J. Han, and J. Pei, "CMAR: Accurate and Efficient Classification Based on Multiple Class-Association Rules," Proc. IEEE Int'l Conf. Data Mining (ICDM), pp. 369-376, 2001.
-
(2001)
Proc. IEEE Int'l Conf. Data Mining (ICDM)
, pp. 369-376
-
-
Li, W.1
Han, J.2
Pei, J.3
-
32
-
-
85008008184
-
On mining instance-centric classification rules
-
Nov
-
J. Wang and G. Karypis, "On Mining Instance-Centric Classification Rules," IEEE Trans. Knowledge and Data Eng., vol. 18, no. 11, pp. 1497-1511, Nov. 2006.
-
(2006)
IEEE Trans. Knowledge and Data Eng.
, vol.18
, Issue.11
, pp. 1497-1511
-
-
Wang, J.1
Karypis, G.2
-
33
-
-
11344262990
-
CPAR: Classification based on predictive association rules
-
X. Yin and J. Han, "CPAR: Classification Based on Predictive Association Rules," Proc. SIAM Int'l Conf. Data Mining, 2003.
-
(2003)
Proc. SIAM Int'l Conf. Data Mining
-
-
Yin, X.1
Han, J.2
-
34
-
-
84988297598
-
Information-based classification by aggregating emerging patterns
-
Data Mining, Financial Eng., and Intelligent Agents
-
X. Zhang, G. Dong, and K. Ramamohanarao, "Information-Based Classification by Aggregating Emerging Patterns," Proc. Second Int'l Conf. Intelligent Data Eng. and Automated Learning, Data Mining, Financial Eng., and Intelligent Agents, 2000.
-
(2000)
Proc. Second Int'l Conf. Intelligent Data Eng. and Automated Learning
-
-
Zhang, X.1
Dong, G.2
Ramamohanarao, K.3
-
35
-
-
84926662675
-
Nearest neighbor pattern classification
-
IT-13, Sept
-
P. Cover and P. Hart, "Nearest Neighbor Pattern Classification, " IEEE Trans. Information Theory, vol. IT-13, no. 1, pp. 21-27, Sept. 2006, http://dx.doi.org/10.1109/TIT.1967.1053964.
-
(2006)
IEEE Trans. Information Theory
, Issue.1
, pp. 21-27
-
-
Cover, P.1
Hart, P.2
-
36
-
-
0000259511
-
Approximate statistical tests for comparing supervised classification learning algorithms
-
T.G. Dietterich, "Approximate Statistical Test for Comparing Supervised Classification Learning Algorithms," Neural Computation, vol. 10, no. 7, pp. 1895-1923, 1998. (Pubitemid 128463689)
-
(1998)
Neural Computation
, vol.10
, Issue.7
, pp. 1895-1923
-
-
Dietterich, T.G.1
-
37
-
-
84933530882
-
Approximating discrete probability distributions with dependence trees
-
IT-14, May
-
C. Chow and C. Liu, "Approximating Discrete Probability Distributions with Dependence Trees," IEEE Trans. Information Theory, vol. IT-14, no. 3, pp. 462-467, May 1968.
-
(1968)
IEEE Trans. Information Theory
, Issue.3
, pp. 462-467
-
-
Chow, C.1
Liu, C.2
-
39
-
-
14344256569
-
Learning bayesian network classifiers by maximizing conditional likelihood
-
D. Grossman and P. Domingos, "Learning Bayesian Network Classifiers by Maximizing Conditional Likelihood," Proc. 21st Int'l Conf. Machine Learning (ICML '04), http://doi.acm.org/10.1145/1015330.1015339, p. 46, 2004.
-
(2004)
Proc. 21st Int'l Conf. Machine Learning (ICML '04)
, pp. 46
-
-
Grossman, D.1
Domingos, P.2
-
43
-
-
84881414774
-
A decision tree-based attribute weighting filter for naive bayes
-
M. Bramer, F. Coenen, and A. Tuson, eds., Springer
-
M. Hall, "A Decision Tree-Based Attribute Weighting Filter for Naive Bayes," Research and Development in Intelligent Systems XXIII, M. Bramer, F. Coenen, and A. Tuson, eds., pp. 59-70, Springer, 2007.
-
(2007)
Research and Development in Intelligent Systems XXIII
, pp. 59-70
-
-
Hall, M.1
-
44
-
-
0027621699
-
Mining association rules between sets of items in large databases
-
R. Agrawal, T. Imielinski, and A. Swami, "Mining Association Rules between Sets of Items in Large Databases," ACM SIGMOD Record, vol. 22, pp. 207-216, 1993.
-
(1993)
ACM SIGMOD Record
, vol.22
, pp. 207-216
-
-
Agrawal, R.1
Imielinski, T.2
Swami, A.3
-
45
-
-
0018877134
-
Axiomatic derivation of the principle of maximum entropy and the principle of minimum cross-entropy
-
R. Johnson and J. Shore, "Axiomatic Derivation of the Principle of Maximum Entropy and the Principle of Minimum Cross-Entropy," IEEE Trans. Information Theory, vol. IT-26, no. 1, pp. 26-37, Jan. 1980. (Pubitemid 11451543)
-
(1980)
IEEE Transactions on Information Theory
, vol.IT-26
, Issue.1
, pp. 26-37
-
-
Shore John, E.1
Johnson Rodney, W.2
-
46
-
-
77957852032
-
Support driven opportunistic aggregation for generalized itemset extraction
-
E. Baralis, L. Cagliero, T. Cerquitelli, V. D'Elia, and P. Garza, "Support Driven Opportunistic Aggregation for Generalized Itemset Extraction," Proc. Fifth Int'l Conf. Intelligent Systems, 2010.
-
(2010)
Proc. Fifth Int'l Conf. Intelligent Systems
-
-
Baralis, E.1
Cagliero, L.2
Cerquitelli, T.3
D'Elia, V.4
Garza, P.5
|