메뉴 건너뛰기




Volumn 4, Issue 4, 2013, Pages 753-762

A hybrid network intrusion detection framework based on random forests and weighted k-means

Author keywords

Computer network security; Data mining; Intrusion detection; k Means; Random forests

Indexed keywords

ANOMALY DETECTION; CLASSIFICATION (OF INFORMATION); COMPUTER NETWORKS; DATA MINING; DECISION TREES; INTRUSION DETECTION; NETWORK SECURITY;

EID: 84887824664     PISSN: 20904479     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.asej.2013.01.003     Document Type: Article
Times cited : (136)

References (20)
  • 1
    • 3242808612 scopus 로고    scopus 로고
    • Computer Security Inst., San Francisco, CA
    • CSI/FBI Computer Crime and Security Survey. Computer Security Inst., San Francisco, CA; 2004. < http://www.issa-sac.org/docs/FBI2004.pdf >.
    • (2004) CSI/FBI Computer Crime and Security Survey
  • 8
    • 84887826957 scopus 로고    scopus 로고
    • Snort Network Intrusion Detection System
    • Snort Network Intrusion Detection System; 2006. < http://www.snort.org >.
    • (2006)
  • 10
    • 84868695480 scopus 로고    scopus 로고
    • Unsupervised anomaly detection in network intrusion detection using clusters
    • Newcastle, Australia
    • Leung K, Leckie C. Unsupervised anomaly detection in network intrusion detection using clusters. In: Proc 28th Australasian CS conf, vol. 38, Newcastle, Australia; 2005. p. 333-42.
    • (2005) Proc 28th Australasian CS Conf , vol.38 , pp. 333-342
    • Leung, K.1    Leckie, C.2
  • 11
    • 80055024879 scopus 로고    scopus 로고
    • Minkowski metric, feature weighting and anomalous cluster initializing in k-means clustering
    • R. Cordeiro de Amorim, and B. Mirkin Minkowski metric, feature weighting and anomalous cluster initializing in k-means clustering, Elsevier's J Pattern Recognit 45 2012 1061 1075
    • (2012) Elsevier's J Pattern Recognit , vol.45 , pp. 1061-1075
    • Cordeiro De Amorim, R.1    Mirkin, B.2
  • 13
    • 0037105910 scopus 로고    scopus 로고
    • Intrusion detection techniques and approaches
    • T. Verwoerd, and R. Hunt Intrusion detection techniques and approaches Comput Commun 25 2002 1356 1365
    • (2002) Comput Commun , vol.25 , pp. 1356-1365
    • Verwoerd, T.1    Hunt, R.2
  • 15
    • 85130866618 scopus 로고    scopus 로고
    • Weighting method for feature selection in k-means
    • H. Liu, H. Motoda, Chapman & Hall/CRC
    • J.Z. Huang, J. Xu, M. Ng, and Y. Ye Weighting method for feature selection in k-means H. Liu, H. Motoda, Computational methods of feature selection 2008 Chapman & Hall/CRC 193 209
    • (2008) Computational Methods of Feature Selection , pp. 193-209
    • Huang, J.Z.1    Xu, J.2    Ng, M.3    Ye, Y.4
  • 18
    • 0038428854 scopus 로고    scopus 로고
    • Results of the KDD'99 classifier learning
    • C. Elkan Results of the KDD'99 classifier learning SIGKDD Explor 1 2 2000 63 64
    • (2000) SIGKDD Explor , vol.1 , Issue.2 , pp. 63-64
    • Elkan, C.1
  • 20
    • 37549018049 scopus 로고    scopus 로고
    • Wu X, et al. Survey paper, Springer-Verlag London Limited 2007. Knowl Inf Syst
    • Wu X, et al. Top 10 algorithms in data mining. Survey paper, Springer-Verlag London Limited 2007. Knowl Inf Syst, vol. 14; 2008. p. 1-37.
    • (2008) Top 10 Algorithms in Data Mining , vol.14 , pp. 1-37


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.