메뉴 건너뛰기




Volumn 126, Issue , 2014, Pages 71-77

Random forest active learning for AAA thrombus segmentation in computed tomography angiography images

Author keywords

Abdominal aortic aneurysm segmentation; Active learning; CTA image segmentation; Random forests

Indexed keywords

3D COMPUTED TOMOGRAPHIES; ABDOMINAL AORTIC ANEURYSM SEGMENTATION; ABDOMINAL AORTIC ANEURYSMS; ACTIVE LEARNING; COMPUTED TOMOGRAPHY ANGIOGRAPHY; INTERACTIVE IMAGE SEGMENTATION; RANDOM FORESTS; SEGMENTATION PROCEDURE;

EID: 84887609118     PISSN: 09252312     EISSN: 18728286     Source Type: Journal    
DOI: 10.1016/j.neucom.2013.01.051     Document Type: Article
Times cited : (47)

References (31)
  • 1
    • 84855610739 scopus 로고    scopus 로고
    • Knowledge management in image-based analysis of blood vessel structures
    • Macia I., Graña M., Paloc C. Knowledge management in image-based analysis of blood vessel structures. Knowledge and Information Systems 2012, 30(2):457-491.
    • (2012) Knowledge and Information Systems , vol.30 , Issue.2 , pp. 457-491
    • Macia, I.1    Graña, M.2    Paloc, C.3
  • 2
    • 70350345530 scopus 로고    scopus 로고
    • A review of 3d vessel lumen segmentation techniques. models features and extraction schemes
    • Lesage D., Angelini E.D., Bloch I., Funka-Lea G. A review of 3d vessel lumen segmentation techniques. models features and extraction schemes. Medical Image Analysis 2009, 13(6):819-845.
    • (2009) Medical Image Analysis , vol.13 , Issue.6 , pp. 819-845
    • Lesage, D.1    Angelini, E.D.2    Bloch, I.3    Funka-Lea, G.4
  • 4
    • 17444407892 scopus 로고    scopus 로고
    • Segmentation of thrombus in abdominal aortic aneurysms from CTA with nonparametric statistical grey level appearance modeling
    • Olabarriaga S., Rouet J., Fradkin M., Breeuwer M., Niessen W. Segmentation of thrombus in abdominal aortic aneurysms from CTA with nonparametric statistical grey level appearance modeling. IEEE Transactions On Medical Imaging 2005, 24(4):477-485.
    • (2005) IEEE Transactions On Medical Imaging , vol.24 , Issue.4 , pp. 477-485
    • Olabarriaga, S.1    Rouet, J.2    Fradkin, M.3    Breeuwer, M.4    Niessen, W.5
  • 5
    • 33646440020 scopus 로고    scopus 로고
    • An abdominal aortic aneurysm segmentation method. level set with region and statistical information
    • Zhuge F., Rubin G.D., Sun S.H., Napel S. An abdominal aortic aneurysm segmentation method. level set with region and statistical information. Medical Physics 2006, 33(5):1440-1453.
    • (2006) Medical Physics , vol.33 , Issue.5 , pp. 1440-1453
    • Zhuge, F.1    Rubin, G.D.2    Sun, S.H.3    Napel, S.4
  • 6
    • 70449371807 scopus 로고    scopus 로고
    • Hybrid deformable model for aneurysm segmentation, in: ISBI'09
    • S. Demirci, G. Lejeune, N. Navab, Hybrid deformable model for aneurysm segmentation, in: ISBI'09, 2009, pp. 33-36.
    • (2009) , pp. 33-36
    • Demirci, S.1    Lejeune, G.2    Navab, N.3
  • 7
    • 80052950585 scopus 로고    scopus 로고
    • Detection of type II endoleaks in abdominal aortic aneurysms after endovascular repair
    • Macia I., Grana M., Maiora J., Paloc C., de Blas M. Detection of type II endoleaks in abdominal aortic aneurysms after endovascular repair. Computers in Biology and Medicine 2011, 41(10):871-880.
    • (2011) Computers in Biology and Medicine , vol.41 , Issue.10 , pp. 871-880
    • Macia, I.1    Grana, M.2    Maiora, J.3    Paloc, C.4    de Blas, M.5
  • 8
    • 77955209062 scopus 로고    scopus 로고
    • An iterative model-constraint graph-cut algorithm for abdominal aortic aneurysm thrombus segmentation, in: Proceedings of the 2010 IEEE International Symposium on Biomedical Imaging: From Nano to Macro (ISBI'10), IEEE, Rotterdam, The Netherlands
    • M. Freiman, S.J. Esses, L. Joskowicz, J. Sosna, An iterative model-constraint graph-cut algorithm for abdominal aortic aneurysm thrombus segmentation, in: Proceedings of the 2010 IEEE International Symposium on Biomedical Imaging: From Nano to Macro (ISBI'10), IEEE, Rotterdam, The Netherlands, 2010, pp. 672-675.
    • (2010) , pp. 672-675
    • Freiman, M.1    Esses, S.J.2    Joskowicz, L.3    Sosna, J.4
  • 9
    • 0028424239 scopus 로고
    • Improving generalization with active learning
    • Cohn D., Atlas L., Ladner R. Improving generalization with active learning. Machine Learning 1994, 15:201-221.
    • (1994) Machine Learning , vol.15 , pp. 201-221
    • Cohn, D.1    Atlas, L.2    Ladner, R.3
  • 10
    • 84887608618 scopus 로고    scopus 로고
    • Active Learning Literature Survey, Sciences, New York.
    • B. Settles, Active Learning Literature Survey, vol. 15(2), 2010, Sciences, New York.
    • (2010) , vol.15 , Issue.2
    • Settles, B.1
  • 11
    • 2942558578 scopus 로고    scopus 로고
    • Segmentation of multispectral remote sensing images using active support vector machines
    • Mitra P., Shankar B.U., Pal S.K. Segmentation of multispectral remote sensing images using active support vector machines. Pattern Recognition Letters 2004, 25(9):1067-1074.
    • (2004) Pattern Recognition Letters , vol.25 , Issue.9 , pp. 1067-1074
    • Mitra, P.1    Shankar, B.U.2    Pal, S.K.3
  • 13
    • 79957460116 scopus 로고    scopus 로고
    • Using active learning to adapt remote sensing image classifiers, Remote Sensing of Environment
    • D. Tuia, E. Pasolli, W. Emery, Using active learning to adapt remote sensing image classifiers, Remote Sensing of Environment. 115 (9) (2011) 2232-2242.
    • (2011) , vol.115 , Issue.9 , pp. 2232-2242
    • Tuia, D.1    Pasolli, E.2    Emery, W.3
  • 14
    • 68549086546 scopus 로고    scopus 로고
    • Semisupervised SVM batch mode active learning with applications to image retrieval
    • Hoi S.C.H., Jin R., Zhu J., Lyu M.R. Semisupervised SVM batch mode active learning with applications to image retrieval. ACM Transactions on Information Systems 2009, 27(3):1-29.
    • (2009) ACM Transactions on Information Systems , vol.27 , Issue.3 , pp. 1-29
    • Hoi, S.C.H.1    Jin, R.2    Zhu, J.3    Lyu, M.R.4
  • 15
    • 80052312929 scopus 로고    scopus 로고
    • Combining generative and discriminative models for semantic segmentation of ct scans via active learning, in: Information Processing in Medical Imaging, Springer
    • J. Iglesias, E. Konukoglu, A. Montillo, Z. Tu, A. Criminisi, Combining generative and discriminative models for semantic segmentation of ct scans via active learning, in: Information Processing in Medical Imaging, Springer, 2011, pp. 25-36.
    • (2011) , pp. 25-36
    • Iglesias, J.1    Konukoglu, E.2    Montillo, A.3    Tu, Z.4    Criminisi, A.5
  • 16
    • 77951134222 scopus 로고    scopus 로고
    • Robust learning-based annotation of medical radiographs, in: Medical Content-Based Retrieval for Clinical Decision Support, vol. 5853 of Lecture Notes in Computer Science, Springer Berlin/Heidelberg
    • Y. Tao, Z. Peng, B. Jian, J. Xuan, A. Krishnan, X. Sean Zhou, Robust learning-based annotation of medical radiographs, in: Medical Content-Based Retrieval for Clinical Decision Support, vol. 5853 of Lecture Notes in Computer Science, Springer Berlin/Heidelberg, 2010, pp. 77-88.
    • (2010) , pp. 77-88
    • Tao, Y.1    Peng, Z.2    Jian, B.3    Xuan, J.4    Krishnan, A.5    Sean Zhou, X.6
  • 18
    • 68849096223 scopus 로고    scopus 로고
    • Random forest classification for automatic delineation of myocardium in real-time 3d echocardiography
    • Lempitsky V., Verhoek M., Noble J., Blake A. Random forest classification for automatic delineation of myocardium in real-time 3d echocardiography. Functional Imaging and Modeling of the Heart 2009, 447-456.
    • (2009) Functional Imaging and Modeling of the Heart , pp. 447-456
    • Lempitsky, V.1    Verhoek, M.2    Noble, J.3    Blake, A.4
  • 19
    • 79958012408 scopus 로고    scopus 로고
    • Spatial decision forests for MS lesion segmentation in multi-channel MR images, Medical Image Computing and Computer-Assisted Intervention (MICCAI) 2010
    • E. Geremia, B. Menze, O. Clatz, E. Konukoglu, A. Criminisi, N. Ayache, Spatial decision forests for MS lesion segmentation in multi-channel MR images, Medical Image Computing and Computer-Assisted Intervention (MICCAI) 2010, 2010, pp. 111-118.
    • (2010) , pp. 111-118
    • Geremia, E.1    Menze, B.2    Clatz, O.3    Konukoglu, E.4    Criminisi, A.5    Ayache, N.6
  • 20
    • 79551686618 scopus 로고    scopus 로고
    • Discriminative, semantic segmentation of brain tissue in MR images, in: Medical Image Computing and Computer-Assisted Intervention-MICCAI 2009
    • Z. Yi, A. Criminisi, J. Shotton, A. Blake, Discriminative, semantic segmentation of brain tissue in MR images, in: Medical Image Computing and Computer-Assisted Intervention-MICCAI 2009, 2009, pp. 558-565.
    • (2009) , pp. 558-565
    • Yi, Z.1    Criminisi, A.2    Shotton, J.3    Blake, A.4
  • 21
    • 84887607900 scopus 로고    scopus 로고
    • Decision forests with long-range spatial context for organ localization in ct volumes, in: MICCAI Workshop on Probabilistic Models for Medical Image Analysis
    • A. Criminisi, J. Shotton, S. Bucciarelli, Decision forests with long-range spatial context for organ localization in ct volumes, in: MICCAI Workshop on Probabilistic Models for Medical Image Analysis, 2009.
    • (2009)
    • Criminisi, A.1    Shotton, J.2    Bucciarelli, S.3
  • 23
    • 84865076628 scopus 로고    scopus 로고
    • Abdominal CTA image analysis through active learning and decision random forests: application to AAA segmentation, in: International Joint Conference on Neural Networks (IJCNN)
    • J. Maiora, M. Graña, Abdominal CTA image analysis through active learning and decision random forests: application to AAA segmentation, in: International Joint Conference on Neural Networks (IJCNN), 2012.
    • (2012)
    • Maiora, J.1    Graña, M.2
  • 25
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman L. Random forests. Machine learning 2001, 45(1):5-32.
    • (2001) Machine learning , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 26
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman L. Bagging predictors. Machine learning 1996, 24(2):123-140.
    • (1996) Machine learning , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 27
    • 0001492549 scopus 로고    scopus 로고
    • Shape quantization and recognition with randomized trees
    • Amit Y., Geman D. Shape quantization and recognition with randomized trees. Neural computation 1997, 9(7):1545-1588.
    • (1997) Neural computation , vol.9 , Issue.7 , pp. 1545-1588
    • Amit, Y.1    Geman, D.2
  • 29
    • 80053932755 scopus 로고    scopus 로고
    • Improving the classification accuracy of the classic RF method by intelligent feature selection and weighted voting of trees with application to medical image segmentation
    • Yaqub M., Javaid M., Cooper C., Noble J. Improving the classification accuracy of the classic RF method by intelligent feature selection and weighted voting of trees with application to medical image segmentation. Machine Learning in Medical Imaging 2011, 184-192.
    • (2011) Machine Learning in Medical Imaging , pp. 184-192
    • Yaqub, M.1    Javaid, M.2    Cooper, C.3    Noble, J.4
  • 31
    • 82455164229 scopus 로고    scopus 로고
    • New trends and applications on hybrid artificial intelligence systems
    • Corchado E., Graña M., Wozniak M. New trends and applications on hybrid artificial intelligence systems. Neurocomputing 2012, 75:61-63.
    • (2012) Neurocomputing , vol.75 , pp. 61-63
    • Corchado, E.1    Graña, M.2    Wozniak, M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.