메뉴 건너뛰기




Volumn , Issue , 2012, Pages

Abdominal CTA image analisys through active learning and decision random forests: Aplication to AAA segmentation

Author keywords

Active Learningedical Image; Active LearningM; edical Image; Segmentation

Indexed keywords

ABDOMINAL AORTIC ANEURYSMS; ACTIVE LEARNING; ACTIVE LEARNINGEDICAL IMAGE; ACTIVE LEARNINGM; AORTIC WALLS; COMPUTERIZED TOMOGRAPHY ANGIOGRAPHIES; CT VOLUME; EDICAL IMAGE; ENDOVASCULAR; ILIAC ARTERIES; IMAGE INTENSITIES; MINIMALLY INVASIVE; RANDOM FOREST CLASSIFIER; RANDOM FORESTS; SEMI-AUTOMATICS; TIME-CONSUMING TASKS;

EID: 84865076628     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/IJCNN.2012.6252801     Document Type: Conference Paper
Times cited : (23)

References (28)
  • 5
    • 70350345530 scopus 로고    scopus 로고
    • A review of 3d vessel lumen segmentation techniques: Models, features and extraction schemes
    • D. Lesage, E. D. Angelini, I. Bloch, and G. Funka-Lea, "A review of 3d vessel lumen segmentation techniques: Models, features and extraction schemes," Medical Image Analysis, vol. 13, no. 6, pp. 819 - 845, 2009.
    • (2009) Medical Image Analysis , vol.13 , Issue.6 , pp. 819-845
    • Lesage, D.1    Angelini, E.D.2    Bloch, I.3    Funka-Lea, G.4
  • 7
    • 1842558516 scopus 로고    scopus 로고
    • Interactive segmentation of abdominal aortic aneurysms in cta images
    • Jun.
    • M. de Bruijne, B. van Ginneken, M. A. Viergever, and W. J. Niessen, "Interactive segmentation of abdominal aortic aneurysms in cta images." Med Image Anal, vol. 8, no. 2, pp. 127-138, Jun 2004.
    • (2004) Med Image Anal , vol.8 , Issue.2 , pp. 127-138
    • De Bruijne, M.1    Van Ginneken, B.2    Viergever, M.A.3    Niessen, W.J.4
  • 8
    • 17444407892 scopus 로고    scopus 로고
    • Segmentation of thrombus in abdominal aortic aneurysms from CTA with nonparametric statistical grey level appearance modeling
    • APR.
    • S. Olabarriaga, J. Rouet, M. Fradkin, M. Breeuwer, and W. Niessen, "Segmentation of thrombus in abdominal aortic aneurysms from CTA with nonparametric statistical grey level appearance modeling," IEEE Transactions On Medical Imaging, vol. 24, no. 4, pp. 477-485, APR 2005.
    • (2005) IEEE Transactions on Medical Imaging , vol.24 , Issue.4 , pp. 477-485
    • Olabarriaga, S.1    Rouet, J.2    Fradkin, M.3    Breeuwer, M.4    Niessen, W.5
  • 9
    • 33646440020 scopus 로고    scopus 로고
    • An abdominal aortic aneurysm segmentation method: Level set with region and statistical information
    • F. Zhuge, G. D. Rubin, S. H. Sun, and S. Napel, "An abdominal aortic aneurysm segmentation method: Level set with region and statistical information," Medical Physics, vol. 33, no. 5, pp. 1440-1453, 2006.
    • (2006) Medical Physics , vol.33 , Issue.5 , pp. 1440-1453
    • Zhuge, F.1    Rubin, G.D.2    Sun, S.H.3    Napel, S.4
  • 10
    • 70449371807 scopus 로고    scopus 로고
    • Hybrid deformable model for aneurysm segmentation
    • S. Demirci, G. Lejeune, and N. Navab, "Hybrid deformable model for aneurysm segmentation." in ISBI'09, 2009, pp. 33-36.
    • (2009) ISBI'09 , pp. 33-36
    • Demirci, S.1    Lejeune, G.2    Navab, N.3
  • 12
    • 3042525106 scopus 로고    scopus 로고
    • Learning to detect natural image boundaries using local brightness, color, and texture cues
    • F. C. M. J. Martin, D.R., "Learning to detect natural image boundaries using local brightness, color, and texture cues," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 26, no. 5, pp. 530-549, 2004.
    • (2004) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.26 , Issue.5 , pp. 530-549
    • Martin, F.C.M.J.D.R.1
  • 13
    • 68849096223 scopus 로고    scopus 로고
    • Random forest classification for automatic delineation of myocardium in real-time 3d echocardiography
    • V. Lempitsky, M. Verhoek, J. Noble, and A. Blake, "Random forest classification for automatic delineation of myocardium in real-time 3d echocardiography," Functional Imaging and Modeling of the Heart, pp. 447-456, 2009.
    • (2009) Functional Imaging and Modeling of the Heart , pp. 447-456
    • Lempitsky, V.1    Verhoek, M.2    Noble, J.3    Blake, A.4
  • 16
    • 80053932755 scopus 로고    scopus 로고
    • Improving the classification accuracy of the classic rf method by intelligent feature selection and weighted voting of trees with application to medical image segmentation
    • M. Yaqub, M. Javaid, C. Cooper, and J. Noble, "Improving the classification accuracy of the classic rf method by intelligent feature selection and weighted voting of trees with application to medical image segmentation," Machine Learning in Medical Imaging, pp. 184-192, 2011.
    • (2011) Machine Learning in Medical Imaging , pp. 184-192
    • Yaqub, M.1    Javaid, M.2    Cooper, C.3    Noble, J.4
  • 19
    • 56849127860 scopus 로고    scopus 로고
    • Spectral and spatial classification of hyperspectral data using SVMS and morphological profiles
    • nov.
    • M. Fauvel, J. Benediktsson, J. Chanussot, and J. Sveinsson, "Spectral and spatial classification of hyperspectral data using svms and morphological profiles," Geoscience and Remote Sensing, IEEE Transactions on, vol. 46, no. 11, pp. 3804-3814, nov. 2008.
    • (2008) Geoscience and Remote Sensing, IEEE Transactions on , vol.46 , Issue.11 , pp. 3804-3814
    • Fauvel, M.1    Benediktsson, J.2    Chanussot, J.3    Sveinsson, J.4
  • 20
    • 0033237157 scopus 로고    scopus 로고
    • An incremental-learning neural network for the classification of remote-sensing images
    • L. Bruzzone and D. F. Prieto, "An incremental-learning neural network for the classification of remote-sensing images," Pattern Recognition Letters, vol. 20, no. 11-13, pp. 1241 - 1248, 1999.
    • (1999) Pattern Recognition Letters , vol.20 , Issue.11-13 , pp. 1241-1248
    • Bruzzone, L.1    Prieto, D.F.2
  • 21
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • L. Breiman, "Random forests," Machine learning, vol. 45, no. 1, pp. 5-32, 2001.
    • (2001) Machine Learning , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 22
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • - "Bagging predictors," Machine learning, vol. 24, no. 2, pp. 123-140, 1996.
    • (1996) Machine Learning , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 23
    • 0001492549 scopus 로고    scopus 로고
    • Shape quantization and recognition with randomized trees
    • Y. Amit and D. Geman, "Shape quantization and recognition with randomized trees," Neural computation, vol. 9, no. 7, pp. 1545-1588, 1997.
    • (1997) Neural Computation , vol.9 , Issue.7 , pp. 1545-1588
    • Amit, Y.1    Geman, D.2
  • 24
    • 0032139235 scopus 로고    scopus 로고
    • The random subspace method for constructing decision forests
    • T. Ho, "The random subspace method for constructing decision forests," Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol. 20, no. 8, pp. 832-844, 1998.
    • (1998) Pattern Analysis and Machine Intelligence, IEEE Transactions on , vol.20 , Issue.8 , pp. 832-844
    • Ho, T.1
  • 25
    • 77953542146 scopus 로고    scopus 로고
    • Real-time optical markerless tracking for augmented reality applications
    • I. Barandiaran, C. Paloc, and M. Graña, "Real-time optical markerless tracking for augmented reality applications," Journal of Real-Time Image Processing, vol. 5, pp. 129-138, 2010.
    • (2010) Journal of Real-Time Image Processing , vol.5 , pp. 129-138
    • Barandiaran, I.1    Paloc, C.2    Graña, M.3
  • 26
    • 84255174914 scopus 로고    scopus 로고
    • Active learning literature survey
    • B. Settles, "Active learning literature survey," SciencesNew York, vol. 15, no. 2, 2010.
    • (2010) SciencesNew York , vol.15 , Issue.2
    • Settles, B.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.