메뉴 건너뛰기




Volumn 59, Issue 3, 2013, Pages 157-167

Phased searching with NEAT in a Time-Scaled Framework: Experiments on a computer-aided detection system for lung nodules

Author keywords

Artificial neural networks; Classifiers; Evolutionary computation; Feature selection; Lung nodule detection; Medical image analysis

Indexed keywords

COMPUTED TOMOGRAPHY SCAN; COMPUTER-AIDED DETECTION; DETECTION SENSITIVITY; LUNG NODULE DETECTION; METHODS AND MATERIALS; STRUCTURAL TOPOLOGIES; SUPPORT VECTOR MACHINE (SVMS); TRIAL-AND-ERROR APPROACH;

EID: 84887606769     PISSN: 09333657     EISSN: 18732860     Source Type: Journal    
DOI: 10.1016/j.artmed.2013.07.002     Document Type: Article
Times cited : (27)

References (70)
  • 2
    • 0002774069 scopus 로고
    • Feature set search algorithms
    • Sijthoff and Noordhoff, Alphen aan den Rijn, The Netherlands, C.H. Chen (Ed.)
    • Kittler J. Feature set search algorithms. Pattern recognition and signal processing 1978, 41-60. Sijthoff and Noordhoff, Alphen aan den Rijn, The Netherlands. C.H. Chen (Ed.).
    • (1978) Pattern recognition and signal processing , pp. 41-60
    • Kittler, J.1
  • 4
    • 77955655312 scopus 로고    scopus 로고
    • Dimension reduction and its application to model-based exploration in continuous spaces
    • Nouri A., Littman M.L. Dimension reduction and its application to model-based exploration in continuous spaces. Mach Learn 2010, 81:85-98.
    • (2010) Mach Learn , vol.81 , pp. 85-98
    • Nouri, A.1    Littman, M.L.2
  • 5
    • 33745561205 scopus 로고    scopus 로고
    • An introduction to variable and feature selection
    • Guyon I., Elisseeff A. An introduction to variable and feature selection. J Mach Learn Res 2003, 3:1157-1182.
    • (2003) J Mach Learn Res , vol.3 , pp. 1157-1182
    • Guyon, I.1    Elisseeff, A.2
  • 6
    • 17044405923 scopus 로고    scopus 로고
    • Toward integrating feature selection algorithms for classification and clustering
    • Liu H., Yu L. Toward integrating feature selection algorithms for classification and clustering. IEEE Trans Knowledge Data Eng 2005, 17:491-502.
    • (2005) IEEE Trans Knowledge Data Eng , vol.17 , pp. 491-502
    • Liu, H.1    Yu, L.2
  • 7
    • 85013515810 scopus 로고
    • Comparative study of techniques for large-scale feature selection
    • Elsevier Science B.V., Amsterdam, E.S. Gelsema, L.N. Kanal (Eds.)
    • Ferri F.J., Pudil P., Hatef M., Kittler J. Comparative study of techniques for large-scale feature selection. Pattern recognition in practice IV 1994, 403-413. Elsevier Science B.V., Amsterdam. E.S. Gelsema, L.N. Kanal (Eds.).
    • (1994) Pattern recognition in practice IV , pp. 403-413
    • Ferri, F.J.1    Pudil, P.2    Hatef, M.3    Kittler, J.4
  • 9
    • 0031078007 scopus 로고    scopus 로고
    • Feature selection: evaluation, application, and small sample performance
    • Jain A., Zongker D. Feature selection: evaluation, application, and small sample performance. IEEE Trans Pattern Anal Mach Intell 1997, 19:153-158.
    • (1997) IEEE Trans Pattern Anal Mach Intell , vol.19 , pp. 153-158
    • Jain, A.1    Zongker, D.2
  • 10
    • 0033640901 scopus 로고    scopus 로고
    • Comparison of algorithms that select features for pattern classifiers
    • Kudo M., Sklansky J. Comparison of algorithms that select features for pattern classifiers. Pattern Recogn 2000, 33:25-41.
    • (2000) Pattern Recogn , vol.33 , pp. 25-41
    • Kudo, M.1    Sklansky, J.2
  • 12
    • 71549122895 scopus 로고    scopus 로고
    • Pleural nodule identification in low-dose and thin-slice lung computed tomography
    • Retico A., Fantacci M.E., Gori I., Kasae P., Golosio B., Piccioli A., et al. Pleural nodule identification in low-dose and thin-slice lung computed tomography. Comput Biol Med 2009, 39:1137-1144.
    • (2009) Comput Biol Med , vol.39 , pp. 1137-1144
    • Retico, A.1    Fantacci, M.E.2    Gori, I.3    Kasae, P.4    Golosio, B.5    Piccioli, A.6
  • 13
    • 0027701513 scopus 로고
    • Genetic reinforcement learning for neurocontrol problems
    • Whitley D., Dominic S., Das R., Anderson C.W. Genetic reinforcement learning for neurocontrol problems. Mach Learn 1993, 13:259-284.
    • (1993) Mach Learn , vol.13 , pp. 259-284
    • Whitley, D.1    Dominic, S.2    Das, R.3    Anderson, C.W.4
  • 14
    • 0012329219 scopus 로고    scopus 로고
    • A comparison between cellular encoding and direct encoding for genetic neural networks
    • MIT Press, Cambridge, MA, J.R. Koza, D.E. Goldberg, D.B. Fogel, R.L. Riolo (Eds.)
    • Gruau F., Whitley D., Pyeatt L. A comparison between cellular encoding and direct encoding for genetic neural networks. Proceedings of the first annual conference on genetic programming 1996, 81-89. MIT Press, Cambridge, MA. J.R. Koza, D.E. Goldberg, D.B. Fogel, R.L. Riolo (Eds.).
    • (1996) Proceedings of the first annual conference on genetic programming , pp. 81-89
    • Gruau, F.1    Whitley, D.2    Pyeatt, L.3
  • 16
    • 10444270597 scopus 로고    scopus 로고
    • Forming neural networks through efficient and adaptive coevolution
    • Moriarty D.E., Miikkulainen R. Forming neural networks through efficient and adaptive coevolution. Evol Comput 1997, 5:373-399.
    • (1997) Evol Comput , vol.5 , pp. 373-399
    • Moriarty, D.E.1    Miikkulainen, R.2
  • 17
    • 0034153728 scopus 로고    scopus 로고
    • Cooperative coevolution: an architecture for evolving coadapted subcomponents
    • Potter M.A., Jong K.A.D. Cooperative coevolution: an architecture for evolving coadapted subcomponents. Evol Comput 2000, 8:1-29.
    • (2000) Evol Comput , vol.8 , pp. 1-29
    • Potter, M.A.1    Jong, K.A.D.2
  • 18
    • 55349116293 scopus 로고    scopus 로고
    • Neuroevolution: from architectures to learning
    • Floreano D., Dürr P., Mattiussi C. Neuroevolution: from architectures to learning. Evol Intell 2008, 1:47-62.
    • (2008) Evol Intell , vol.1 , pp. 47-62
    • Floreano, D.1    Dürr, P.2    Mattiussi, C.3
  • 19
    • 0003038016 scopus 로고
    • Species adaptation genetic algorithms: a basis for a continuing SAGA
    • MIT Press/Bradford Books, Cambridge, MA, F.J. Varela, P. Bourgine (Eds.)
    • Harvey I. Species adaptation genetic algorithms: a basis for a continuing SAGA. Proceedings of the first European Conference on Artificial Life (ECAL) 1992, 346-354. MIT Press/Bradford Books, Cambridge, MA. F.J. Varela, P. Bourgine (Eds.).
    • (1992) Proceedings of the first European Conference on Artificial Life (ECAL) , pp. 346-354
    • Harvey, I.1
  • 21
    • 33646007611 scopus 로고    scopus 로고
    • Analysing the evolvability of neural network agents through structural mutations
    • Springer-Verlag, Berlin, Heidelberg/Canterbury, UK, M. Capcarrere (Ed.)
    • Schlessinger E., Bentley P.J., Lotto R.B. Analysing the evolvability of neural network agents through structural mutations. European Conference on Artificial Life (ECAL) 2005, 312-321. Springer-Verlag, Berlin, Heidelberg/Canterbury, UK. M. Capcarrere (Ed.).
    • (2005) European Conference on Artificial Life (ECAL) , pp. 312-321
    • Schlessinger, E.1    Bentley, P.J.2    Lotto, R.B.3
  • 23
    • 77951647196 scopus 로고    scopus 로고
    • A new computationally efficient CAD system for pulmonary nodule detection in CT imagery
    • Messay T., Hardie R.C., Rogers S.K. A new computationally efficient CAD system for pulmonary nodule detection in CT imagery. Med Image Anal 2010, 14:390-406.
    • (2010) Med Image Anal , vol.14 , pp. 390-406
    • Messay, T.1    Hardie, R.C.2    Rogers, S.K.3
  • 24
    • 68849111865 scopus 로고    scopus 로고
    • A large-scale evaluation of automatic pulmonary nodule detection in chest CT using local image features and k-nearest-neighbour classification
    • Murphy K., van Ginneken B., Schilham A.M.R., de Hoop B.J., Gietema H.A., Prokop M. A large-scale evaluation of automatic pulmonary nodule detection in chest CT using local image features and k-nearest-neighbour classification. Med Image Anal 2009, 13:757-770.
    • (2009) Med Image Anal , vol.13 , pp. 757-770
    • Murphy, K.1    van Ginneken, B.2    Schilham, A.M.R.3    de Hoop, B.J.4    Gietema, H.A.5    Prokop, M.6
  • 25
    • 0035384869 scopus 로고    scopus 로고
    • Automated detection of pulmonary nodules in helical CT images based on an improved template-matching technique
    • Lee Y., Hara T., Fujita H., Itoh S., Ishigaki T. Automated detection of pulmonary nodules in helical CT images based on an improved template-matching technique. IEEE Trans Med Imag 2001, 20:595-604.
    • (2001) IEEE Trans Med Imag , vol.20 , pp. 595-604
    • Lee, Y.1    Hara, T.2    Fujita, H.3    Itoh, S.4    Ishigaki, T.5
  • 27
    • 80053608049 scopus 로고    scopus 로고
    • A novel computer-aided lung nodule detection system for CT images
    • Tan M., Deklerck R., Jansen B., Bister M., Cornelis J. A novel computer-aided lung nodule detection system for CT images. Med Phys 2011, 38:5630-5645.
    • (2011) Med Phys , vol.38 , pp. 5630-5645
    • Tan, M.1    Deklerck, R.2    Jansen, B.3    Bister, M.4    Cornelis, J.5
  • 28
    • 0036594106 scopus 로고    scopus 로고
    • Evolving neural networks through augmenting topologies
    • Stanley K.O., Miikkulainen R. Evolving neural networks through augmenting topologies. Evol Comput 2002, 10:99-127.
    • (2002) Evol Comput , vol.10 , pp. 99-127
    • Stanley, K.O.1    Miikkulainen, R.2
  • 29
    • 34548063270 scopus 로고    scopus 로고
    • Phased searching with NEAT: alternating between complexification and simplification
    • accessed on 20/8/2013
    • Green C. Phased searching with NEAT: alternating between complexification and simplification. Technical Report 2004, accessed on 20/8/2013. http://sharpneat.sourceforge.net/phasedsearch.html.
    • (2004) Technical Report
    • Green, C.1
  • 34
    • 67650188046 scopus 로고    scopus 로고
    • A hypercube-based encoding for evolving large-scale neural networks
    • Stanley K.O., D'Ambrosio D.B., Gauci J. A hypercube-based encoding for evolving large-scale neural networks. Artif Life 2009, 15:185-212.
    • (2009) Artif Life , vol.15 , pp. 185-212
    • Stanley, K.O.1    D'Ambrosio, D.B.2    Gauci, J.3
  • 35
    • 79959710425 scopus 로고    scopus 로고
    • On the performance of indirect encoding across the continuum of regularity
    • Clune J., Stanley K.O., Pennock R.T., Ofria C. On the performance of indirect encoding across the continuum of regularity. IEEE Trans Evol Comput 2011, 15:346-367.
    • (2011) IEEE Trans Evol Comput , vol.15 , pp. 346-367
    • Clune, J.1    Stanley, K.O.2    Pennock, R.T.3    Ofria, C.4
  • 36
    • 77955992290 scopus 로고    scopus 로고
    • Autonomous evolution of topographic regularities in artificial neural networks
    • Gauci J., Stanley K.O. Autonomous evolution of topographic regularities in artificial neural networks. Neural Comput 2010, 22:1860-1898.
    • (2010) Neural Comput , vol.22 , pp. 1860-1898
    • Gauci, J.1    Stanley, K.O.2
  • 37
    • 0012657799 scopus 로고
    • Prototype and feature selection by sampling and random mutation hill-climbing algorithms
    • Skalak D.B. Prototype and feature selection by sampling and random mutation hill-climbing algorithms. Eleventh International Conference on Machine Learning 1994, 293-301.
    • (1994) Eleventh International Conference on Machine Learning , pp. 293-301
    • Skalak, D.B.1
  • 39
    • 84865033087 scopus 로고    scopus 로고
    • Automated feature selection in neuroevolution
    • Tan M., Hartley M., Bister M., Deklerck R. Automated feature selection in neuroevolution. Evol Intell 2009, 4:271-292.
    • (2009) Evol Intell , vol.4 , pp. 271-292
    • Tan, M.1    Hartley, M.2    Bister, M.3    Deklerck, R.4
  • 45
    • 0033362601 scopus 로고    scopus 로고
    • Evolving artificial neural networks
    • Yao X. Evolving artificial neural networks. Proceedings of the IEEE 1999, 1423-1447.
    • (1999) Proceedings of the IEEE , pp. 1423-1447
    • Yao, X.1
  • 46
    • 84887609972 scopus 로고    scopus 로고
    • (accessed 15.01.13)
    • Green C. SharpNEAT 2.2.0 2012, http://sourceforge.net/projects/sharpneat/ (accessed 15.01.13).
    • (2012) SharpNEAT 2.2.0
    • Green, C.1
  • 47
    • 0001903624 scopus 로고
    • Genetic algorithms with sharing for multimodal function optimization
    • Morgan Kaufmann, San Francisco, CA, J.J. Grefenstette (Ed.)
    • Goldberg D.E., Richardson J. Genetic algorithms with sharing for multimodal function optimization. Proceedings of the International Conference on Genetic Algorithms 1987, 148-154. Morgan Kaufmann, San Francisco, CA. J.J. Grefenstette (Ed.).
    • (1987) Proceedings of the International Conference on Genetic Algorithms , pp. 148-154
    • Goldberg, D.E.1    Richardson, J.2
  • 50
    • 4143056820 scopus 로고    scopus 로고
    • Lung image database consortium: developing a resource for the medical imaging research community
    • Armato S.G., McLennan G., McNitt-Gray M.F., Meyer C.R., Yankelevitz D., Aberle D.R., et al. Lung image database consortium: developing a resource for the medical imaging research community. Radiology 2004, 232:739-748.
    • (2004) Radiology , vol.232 , pp. 739-748
    • Armato, S.G.1    McLennan, G.2    McNitt-Gray, M.F.3    Meyer, C.R.4    Yankelevitz, D.5    Aberle, D.R.6
  • 51
    • 79551672468 scopus 로고    scopus 로고
    • The lung image database consortium (LIDC) and image database resource initiative (IDRI): a completed reference database of lung nodules on CT scans
    • Armato S.G., McLennan G., Bidaut L., McNitt-Gray M.F., Meyer C.R., Reeves A.P., et al. The lung image database consortium (LIDC) and image database resource initiative (IDRI): a completed reference database of lung nodules on CT scans. Med Phys 2011, 38:915-931.
    • (2011) Med Phys , vol.38 , pp. 915-931
    • Armato, S.G.1    McLennan, G.2    Bidaut, L.3    McNitt-Gray, M.F.4    Meyer, C.R.5    Reeves, A.P.6
  • 52
    • 36148941022 scopus 로고    scopus 로고
    • The lung image database consortium (LIDC): ensuring the integrity of expert-defined truth
    • Armato S.G., Roberts R.Y., McNitt-Gray M.F., Meyer C.R., Reeves A.P., McLennan G., et al. The lung image database consortium (LIDC): ensuring the integrity of expert-defined truth. Acad Radiol 2007, 14:1455-1463.
    • (2007) Acad Radiol , vol.14 , pp. 1455-1463
    • Armato, S.G.1    Roberts, R.Y.2    McNitt-Gray, M.F.3    Meyer, C.R.4    Reeves, A.P.5    McLennan, G.6
  • 54
    • 35148871318 scopus 로고    scopus 로고
    • Performance analysis for computer aided lung nodule detection on LIDC data. Medical imaging 2007: image perception, observer performance, and technology assessment
    • SPIE (Digital Library), San Diego, CA, USA
    • Opfer R., Wiemker R. Performance analysis for computer aided lung nodule detection on LIDC data. Medical imaging 2007: image perception, observer performance, and technology assessment. Proceedings of the SPIE 2007, vol. 6515:65151C. SPIE (Digital Library), San Diego, CA, USA.
    • (2007) Proceedings of the SPIE , vol.6515
    • Opfer, R.1    Wiemker, R.2
  • 55
    • 35248860296 scopus 로고    scopus 로고
    • The effect of nodule segmentation on the accuracy of computerized lung nodule detection on CT scans: comparison on a data set annotated by multiple radiologists. Medical imaging 2007: image perception, observer performance, and technology assessment
    • SPIE (Digital Library), San Diego, CA, USA
    • Sahiner B., Hadjilski L.M., Chan H.P., Shi J.Z., Way T., Cascade P.N., et al. The effect of nodule segmentation on the accuracy of computerized lung nodule detection on CT scans: comparison on a data set annotated by multiple radiologists. Medical imaging 2007: image perception, observer performance, and technology assessment. Proceedings of the SPIE 2007, vol. 6514:65140L. SPIE (Digital Library), San Diego, CA, USA.
    • (2007) Proceedings of the SPIE , vol.6514
    • Sahiner, B.1    Hadjilski, L.M.2    Chan, H.P.3    Shi, J.Z.4    Way, T.5    Cascade, P.N.6
  • 56
    • 84878889029 scopus 로고    scopus 로고
    • Fast lung nodule detection in chest CT images using cylindrical nodule-enhancement filter
    • Teramoto A., Fujita H. Fast lung nodule detection in chest CT images using cylindrical nodule-enhancement filter. Int J Comput Assist Radiol Surg 2013, 8(2):193-205.
    • (2013) Int J Comput Assist Radiol Surg , vol.8 , Issue.2 , pp. 193-205
    • Teramoto, A.1    Fujita, H.2
  • 57
    • 67650862815 scopus 로고    scopus 로고
    • Shape-based computer-aided detection of lung nodules in thoracic CT images
    • Ye X.J., Lin X.Y., Dehmeshki J., Slabaugh G., Beddoe G. Shape-based computer-aided detection of lung nodules in thoracic CT images. IEEE Trans Biomed Eng 2009, 56:1810-1820.
    • (2009) IEEE Trans Biomed Eng , vol.56 , pp. 1810-1820
    • Ye, X.J.1    Lin, X.Y.2    Dehmeshki, J.3    Slabaugh, G.4    Beddoe, G.5
  • 58
    • 0038710369 scopus 로고    scopus 로고
    • Massive training artificial neural network (MTANN) for reduction of false positives in computerized detection of lung nodules in low-dose computed tomography
    • Suzuki K., Armato S.G., Li F., Sone S., Doi K. Massive training artificial neural network (MTANN) for reduction of false positives in computerized detection of lung nodules in low-dose computed tomography. Med Phys 2003, 30:1602-1617.
    • (2003) Med Phys , vol.30 , pp. 1602-1617
    • Suzuki, K.1    Armato, S.G.2    Li, F.3    Sone, S.4    Doi, K.5
  • 63
    • 33745558637 scopus 로고    scopus 로고
    • Computer-aided detection in screening CT for pulmonary nodules
    • Yuan R., Vos P.M., Cooperberg P.L. Computer-aided detection in screening CT for pulmonary nodules. Am J Roentgenol 2006, 186:1280-1287.
    • (2006) Am J Roentgenol , vol.186 , pp. 1280-1287
    • Yuan, R.1    Vos, P.M.2    Cooperberg, P.L.3
  • 66
    • 0000169232 scopus 로고
    • An algorithm for least-squares estimation of nonlinear parameters
    • Marquardt D. An algorithm for least-squares estimation of nonlinear parameters. SIAM J Appl Math 1963, 11:431-441.
    • (1963) SIAM J Appl Math , vol.11 , pp. 431-441
    • Marquardt, D.1
  • 67
    • 0028543366 scopus 로고    scopus 로고
    • Training feed-forward networks with the Marquardt algorithm
    • Hagan M.T., Menhaj M. Training feed-forward networks with the Marquardt algorithm. IEEE Trans Neural Netw 1999, 5:989-993.
    • (1999) IEEE Trans Neural Netw , vol.5 , pp. 989-993
    • Hagan, M.T.1    Menhaj, M.2
  • 69
    • 0000873069 scopus 로고
    • A method for the solution of certain non-linear problems in least squares
    • Levenberg K. A method for the solution of certain non-linear problems in least squares. Quart Appl Math 1944, 2:164-168.
    • (1944) Quart Appl Math , vol.2 , pp. 164-168
    • Levenberg, K.1
  • 70
    • 0035196269 scopus 로고    scopus 로고
    • Oriented principal component analysis for large margin classifiers
    • Bermejo S., Cabestany J. Oriented principal component analysis for large margin classifiers. Neural Netw 2001, 14:1447-1461.
    • (2001) Neural Netw , vol.14 , pp. 1447-1461
    • Bermejo, S.1    Cabestany, J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.