메뉴 건너뛰기




Volumn 1, Issue 4, 2009, Pages 271-292

Automated feature selection in neuroevolution

Author keywords

Genetic algorithms evolution; Learning; Neural networks

Indexed keywords


EID: 84865033087     PISSN: 18645909     EISSN: 18645917     Source Type: Journal    
DOI: 10.1007/s12065-009-0018-z     Document Type: Article
Times cited : (21)

References (49)
  • 2
    • 0002774069 scopus 로고
    • Feature set search algorithms
    • In: Chen CH, Alphen aan den Rijn, Netherlands, Sijthoff and Noord-hoff
    • Kittler J (1978) Feature set search algorithms. In: Chen CH (ed) Pattern recognition and signal processing. Sijthoff and Noord-hoff, Alphen aan den Rijn, Netherlands, pp 41-60
    • (1978) Pattern Recognition and Signal Processing , pp. 41-60
    • Kittler, J.1
  • 3
    • 0036740201 scopus 로고    scopus 로고
    • Fast orthogonal forward selection algorithm for feature subset selection
    • Mao KZ (2002) Fast orthogonal forward selection algorithm for feature subset selection. IEEE Trans Neural Netw 13:1218-1224
    • (2002) IEEE Trans Neural Netw , vol.13 , pp. 1218-1224
    • Mao, K.Z.1
  • 4
    • 0017535866 scopus 로고
    • A branch and bound algorithm for feature subset selection
    • Narendra PM, Fukunaga K (1977) A branch and bound algorithm for feature subset selection. IEEE Trans Comput c-26:917-922
    • (1977) IEEE Trans Comput C-26 , pp. 917-922
    • Narendra, P.M.1    Fukunaga, K.2
  • 7
    • 0031078007 scopus 로고    scopus 로고
    • Feature selection: Evaluation, application, and small sample performance
    • Jain A, Zongker D (1997) Feature selection: evaluation, application, and small sample performance. IEEE Trans Pattern Anal Machine Intell 19:153-157
    • (1997) IEEE Trans Pattern Anal Machine Intell , vol.19 , pp. 153-157
    • Jain, A.1    Zongker, D.2
  • 8
    • 0033640901 scopus 로고    scopus 로고
    • Comparison of algorithms that select features for pattern classifiers
    • Kudo M, Sklansky J (2000) Comparison of algorithms that select features for pattern classifiers. Pattern Recognit 33:25-41
    • (2000) Pattern Recognit , vol.33 , pp. 25-41
    • Kudo, M.1    Sklansky, J.2
  • 9
    • 0031381525 scopus 로고    scopus 로고
    • Wrappers for feature subset selection
    • Kohavi R, John GH (1997) Wrappers for feature subset selection. Artif Intell 97:273-324
    • (1997) Artif Intell , vol.97 , pp. 273-324
    • Kohavi, R.1    John, G.H.2
  • 12
    • 0032028297 scopus 로고    scopus 로고
    • Feature subset selection using a genetic algorithm
    • Yang J, Honavar V (1998) Feature subset selection using a genetic algorithm. IEEE Intell Syst 13:44-49
    • (1998) IEEE Intell Syst , vol.13 , pp. 44-49
    • Yang, J.1    Honavar, V.2
  • 15
    • 0036594106 scopus 로고    scopus 로고
    • Evolving neural networks through augmenting topologies
    • Stanley KO, Miikkulainen R (2002) Evolving neural networks through augmenting topologies. Evol Comput 10:99-127
    • (2002) Evol Comput , vol.10 , pp. 99-127
    • Stanley, K.O.1    Miikkulainen, R.2
  • 16
    • 4344679259 scopus 로고    scopus 로고
    • Competitive coevolution through evolutionary complexification
    • Stanley KO, Miikkulainen R (2004) Competitive coevolution through evolutionary complexification. J Artif Intell Res 21:63-100
    • (2004) J Artif Intell Res , vol.21 , pp. 63-100
    • Stanley, K.O.1    Miikkulainen, R.2
  • 18
    • 0001577032 scopus 로고
    • Hybridizing the genetic algorithm and the k nearest neighbors classification algorithm
    • In: Belew RK, Booker LB, Morgan Kaufmann, San Diego
    • Kelly JDK, Davis L (1991) Hybridizing the genetic algorithm and the k nearest neighbors classification algorithm. In: Belew RK, Booker LB (eds) Proceedings of the 4th international conference on genetic algorithms. Morgan Kaufmann, San Diego, pp 377- 383
    • (1991) Proceedings of the 4th International Conference On Genetic Algorithms , pp. 377-383
    • Kelly, J.D.K.1    Davis, L.2
  • 21
    • 0031287711 scopus 로고    scopus 로고
    • Incremental evolution of complex general behavior
    • Gomez F, Miikkulainen R (1997) Incremental evolution of complex general behavior. Adapt Behav 5:317-342
    • (1997) Adapt Behav , vol.5 , pp. 317-342
    • Gomez, F.1    Miikkulainen, R.2
  • 22
    • 0012329219 scopus 로고    scopus 로고
    • A comparison between cellular encoding and direct encoding for genetic neural networks
    • In: Koza JR, Goldberg DE, Fogel DB, Riolo, RL, Cambridge, MA
    • Gruau F, Whitley D, Pyeatt L (1996) A comparison between cellular encoding and direct encoding for genetic neural networks. In: Koza JR, Goldberg DE, Fogel DB, Riolo, RL (eds) Proceedings of the first annual conference on genetic programming, Cambridge, MA, pp 81-89
    • (1996) Proceedings of the First Annual Conference On Genetic Programming , pp. 81-89
    • Gruau, F.1    Whitley, D.2    Pyeatt, L.3
  • 27
    • 0029326731 scopus 로고
    • Evolving neural control systems
    • Saravanan N, Fogel DB (1995) Evolving neural control systems. IEEE Expert 10(3):23-27
    • (1995) IEEE Expert , vol.10 , Issue.3 , pp. 23-27
    • Saravanan, N.1    Fogel, D.B.2
  • 29
    • 0033362601 scopus 로고    scopus 로고
    • Evolving artificial neural networks
    • Yao X (1999) Evolving artificial neural networks. Proc IEEE 87:1423-1447
    • (1999) Proc IEEE , vol.87 , pp. 1423-1447
    • Yao, X.1
  • 30
    • 0002318273 scopus 로고    scopus 로고
    • Efficient reinforcement learning through symbiotic evolution
    • Moriarty DE, Miikkulainen R (1996) Efficient reinforcement learning through symbiotic evolution. Machine Learn 22:11-32
    • (1996) Machine Learn , vol.22 , pp. 11-32
    • Moriarty, D.E.1    Miikkulainen, R.2
  • 31
    • 1542329420 scopus 로고
    • Genetic set recombination and its application to neural network topology optimization
    • Radcliffe NJ (1993) Genetic set recombination and its application to neural network topology optimization. Neural Comput Appl 1:67-90
    • (1993) Neural Comput Appl , vol.1 , pp. 67-90
    • Radcliffe, N.J.1
  • 40
    • 0002702865 scopus 로고    scopus 로고
    • Towards designing artificial neural networks by evolution
    • Yao X, Liu Y (1996) Towards designing artificial neural networks by evolution. Appl Math Comput 91:83-90
    • (1996) Appl Math Comput , vol.91 , pp. 83-90
    • Yao, X.1    Liu, Y.2
  • 47
    • 0012657799 scopus 로고
    • Prototype and feature selection by sampling and random mutation hill-climbing algorithms
    • Morgan Kaufmann, New Brunswick
    • Skalak DB (1994) Prototype and feature selection by sampling and random mutation hill-climbing algorithms. In: Proceedings of the 11th international conference on machine learning. Morgan Kaufmann, New Brunswick, pp 293-301
    • (1994) Proceedings of the 11th International Conference On Machine Learning , pp. 293-301
    • Skalak, D.B.1
  • 48
    • 84857104204 scopus 로고    scopus 로고
    • Accessed 4 Sept 2008
    • Mayr C (2003) NEAT Matlab. Available via http://www.cs.utexas.edu/*nn/soft-view.php?SoftID=23. Accessed 4 Sept 2008
    • (2003) NEAT Matlab
    • Mayr, C.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.