메뉴 건너뛰기




Volumn , Issue , 2012, Pages 887-894

Sample aware embedded feature selection for reinforcement learning

Author keywords

evolutionary policy search; feature selection; reinforcement learning

Indexed keywords

CURSE OF DIMENSIONALITY; DATA SAMPLE; FEATURE SELECTION ALGORITHM; HIGH-DIMENSIONAL; LEARNING PROCESS; NEAR-OPTIMAL POLICIES; OBSERVED SAMPLES; OPTIMAL CONTROL POLICY; POLICY SEARCH; REAL-WORLD SCENARIO; SELECTION TECHNIQUES; STATE SPACE;

EID: 84864683716     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/2330163.2330286     Document Type: Conference Paper
Times cited : (5)

References (16)
  • 1
    • 80052251399 scopus 로고    scopus 로고
    • Tree-based variable selection for dimensionality reduction of large-scale control systems
    • IEEE, April
    • A. Castelletti, S. Galelli, M. Restelli, and R. Soncini-Sessa. Tree-based variable selection for dimensionality reduction of large-scale control systems. In IEEE Symposium on ADPRL, pages 62-69. IEEE, April 2011.
    • (2011) IEEE Symposium on ADPRL , pp. 62-69
    • Castelletti, A.1    Galelli, S.2    Restelli, M.3    Soncini-Sessa, R.4
  • 3
    • 84880666558 scopus 로고    scopus 로고
    • Solving non-markovian control tasks with neuroevolution
    • Morgan Kaufmann
    • F. J. Gomez and R. Miikkulainen. Solving non-markovian control tasks with neuroevolution. In In Proceedings of the 16th IJCAI, pages 1356-1361. Morgan Kaufmann, 1999.
    • (1999) In Proceedings of the 16th IJCAI , pp. 1356-1361
    • Gomez, F.J.1    Miikkulainen, R.2
  • 5
    • 78049334876 scopus 로고    scopus 로고
    • Feature selection for reinforcement learning: Evaluating implicit state-reward dependency via conditional mutual information
    • H. Hachiya and M. Sugiyama. Feature selection for reinforcement learning: Evaluating implicit state-reward dependency via conditional mutual information. In Proceedings of ECML, pages 474-489, 2010.
    • (2010) Proceedings of ECML , pp. 474-489
    • Hachiya, H.1    Sugiyama, M.2
  • 8
    • 17044405923 scopus 로고    scopus 로고
    • Toward integrating feature selection algorithms for classification and clustering
    • H. Liu and L. Yu. Toward integrating feature selection algorithms for classification and clustering. IEEE Transactions on Knowledge and Data Engineering, 17(4):491-502, 2005.
    • (2005) IEEE Transactions on Knowledge and Data Engineering , vol.17 , Issue.4 , pp. 491-502
    • Liu, H.1    Yu, L.2
  • 9
    • 77955655312 scopus 로고    scopus 로고
    • Dimension reduction and its application to model-based exploration in continuous spaces
    • 10.1007/s10994-010-5202-y
    • A. Nouri and M. Littman. Dimension reduction and its application to model-based exploration in continuous spaces. Machine Learning, 81:85-98, 2010. 10.1007/s10994-010-5202-y.
    • (2010) Machine Learning , vol.81 , pp. 85-98
    • Nouri, A.1    Littman, M.2
  • 10
    • 24344458137 scopus 로고    scopus 로고
    • Feature selection based on mutual information: Criteria of max-dependency, max-relevance, and min-redundancy
    • H. Peng, F. Long, and C. Ding. Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans. on Pattern Analysis and Machine Intelligence, 27:1226-1238, 2005.
    • (2005) IEEE Trans. on Pattern Analysis and Machine Intelligence , vol.27 , pp. 1226-1238
    • Peng, H.1    Long, F.2    Ding, C.3
  • 11
    • 0042125798 scopus 로고    scopus 로고
    • Efficient reinforcement learning through evolving neural network topologies
    • San Francisco, Morgan Kaufmann
    • K. O. Stanley and R. Miikkulainen. Efficient reinforcement learning through evolving neural network topologies. In Proceedings of GECCO, page 9, San Francisco, 2002. Morgan Kaufmann.
    • (2002) Proceedings of GECCO , pp. 9
    • Stanley, K.O.1    Miikkulainen, R.2
  • 14
    • 33646714634 scopus 로고    scopus 로고
    • Evolutionary function approximation for reinforcement learning
    • May
    • S. Whiteson and P. Stone. Evolutionary function approximation for reinforcement learning. Journal of Machine Learning Research, 7:877-917, May 2006.
    • (2006) Journal of Machine Learning Research , vol.7 , pp. 877-917
    • Whiteson, S.1    Stone, P.2
  • 15
    • 32444438066 scopus 로고    scopus 로고
    • Automatic feature selection in neuroevolution
    • S. Whiteson, P. Stone, and K. O. Stanley. Automatic feature selection in neuroevolution. In Proceedings of GECCO, pages 1225-1232, 2005.
    • (2005) Proceedings of GECCO , pp. 1225-1232
    • Whiteson, S.1    Stone, P.2    Stanley, K.O.3
  • 16
    • 79960132242 scopus 로고    scopus 로고
    • Embedded incremental feature selection for reinforcement learning
    • R. Wright, S. Loscalzo, and L. Yu. Embedded incremental feature selection for reinforcement learning. In ICAART 2011, pages 263-268, 2011.
    • (2011) ICAART 2011 , pp. 263-268
    • Wright, R.1    Loscalzo, S.2    Yu, L.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.