메뉴 건너뛰기




Volumn 8, Issue 2, 2013, Pages 193-205

Fast lung nodule detection in chest CT images using cylindrical nodule-enhancement filter

Author keywords

Computed tomography (CT); Computer aided detection (CAD); Fast detection; Image processing; Lung; Nodule

Indexed keywords

ALGORITHM; ARTICLE; CALCULATION; COMPUTER ASSISTED DIAGNOSIS; COMPUTER ASSISTED TOMOGRAPHY; CYLINDRICAL NODULE ENHANCEMENT FILTER; DATA BASE; FALSE POSITIVE RESULT; HUMAN; IMAGE ENHANCEMENT; IMAGE PROCESSING; LUNG NODULE; MAJOR CLINICAL STUDY; PRIORITY JOURNAL; SUPPORT VECTOR MACHINE; VELOCITY;

EID: 84878889029     PISSN: 18616410     EISSN: 18616429     Source Type: Journal    
DOI: 10.1007/s11548-012-0767-5     Document Type: Article
Times cited : (107)

References (30)
  • 1
    • 0032565365 scopus 로고    scopus 로고
    • Mass screening for lung cancer with mobile spiral computed tomography scanner
    • 9643744 10.1016/S0140-6736(97)08229-9 1:STN:280:DyaK1czgsFyqtQ%3D%3D
    • Sone S, Takashima S, Li F, Yang Z, Honda T, Maruyama Y et al (1998) Mass screening for lung cancer with mobile spiral computed tomography scanner. Lancet 351: 1242-1245
    • (1998) Lancet , vol.351 , pp. 1242-1245
    • Sone, S.1    Takashima, S.2    Li, F.3    Yang, Z.4    Honda, T.5    Maruyama, Y.6
  • 2
    • 84874247897 scopus 로고    scopus 로고
    • Information
    • National Lung Screening Trial. Information is available at http://www.cancer.gov/clinicaltrials/noteworthy-trials/nlst
    • National Lung Screening Trial
  • 3
    • 84898779912 scopus 로고    scopus 로고
    • Filter - A new filter based on mathematical morphology to extract the isolated shadow, and its application to automatic detection of lung cancer in X-ray CT
    • 10.1109/ICPR.1996.546713
    • Yamamoto S, Matsumoto M, Tateno Y, Iinuma T, Matsumoto T (1996) filter - a new filter based on mathematical morphology to extract the isolated shadow, and its application to automatic detection of lung cancer in X-ray CT. Proc 13th Int Conf Pattern Recognit 2: 3-7
    • (1996) Proc 13th Int Conf Pattern Recognit , vol.2 , pp. 3-7
    • Yamamoto, S.1    Matsumoto, M.2    Tateno, Y.3    Iinuma, T.4    Matsumoto, T.5
  • 4
    • 0035384869 scopus 로고    scopus 로고
    • Automated detection of pulmonary nodules in helical CT images based on an improved template-matching technique
    • 11465466 10.1109/42.932744 1:STN:280:DC%2BD38%2Fit1Sjsw%3D%3D
    • Lee Y, Hara T, Fujita H, Itoh S, Ishigaki T (2001) Automated detection of pulmonary nodules in helical CT images based on an improved template-matching technique. IEEE Trans Med Imaging 20(7): 595-604
    • (2001) IEEE Trans Med Imaging , vol.20 , Issue.7 , pp. 595-604
    • Lee, Y.1    Hara, T.2    Fujita, H.3    Itoh, S.4    Ishigaki, T.5
  • 5
    • 25144483323 scopus 로고    scopus 로고
    • Computer aided characterization of the solitary pulmonary nodule using volumetric and contrast enhancement features
    • 16179208 10.1016/j.acra.2005.06.005
    • Shah SK, McNitt-Gray MF, Rogers SR, Goldin JG, Suh RD, Sayre JW et al (2005) Computer aided characterization of the solitary pulmonary nodule using volumetric and contrast enhancement features. Acad Radiol 12(10): 1310-1319
    • (2005) Acad Radiol , vol.12 , Issue.10 , pp. 1310-1319
    • Shah, S.K.1    McNitt-Gray, M.F.2    Rogers, S.R.3    Goldin, J.G.4    Suh, R.D.5    Sayre, J.W.6
  • 6
    • 34247245110 scopus 로고    scopus 로고
    • Recent progress in computer-aided diagnosis of lung nodules on thin-section CT
    • 17369020 10.1016/j.compmedimag.2007.02.005
    • Li W (2007) Recent progress in computer-aided diagnosis of lung nodules on thin-section CT. Comput Med Imaging Graph 31(4-5): 248-257
    • (2007) Comput Med Imaging Graph , vol.31 , Issue.4-5 , pp. 248-257
    • Li, W.1
  • 7
    • 38149093135 scopus 로고    scopus 로고
    • Computerized detection of lung nodules in thin-section CT images by use of selective enhancement filters and an automated rule-based classifier
    • 18206615 10.1016/j.acra.2007.09.018 1:CAS:528:DC%2BD1MXislersLY%3D
    • Li Q, Li F, Doi K (2008) Computerized detection of lung nodules in thin-section CT images by use of selective enhancement filters and an automated rule-based classifier. Acad Radiol 15(2): 165-175
    • (2008) Acad Radiol , vol.15 , Issue.2 , pp. 165-175
    • Li, Q.1    Li, F.2    Doi, K.3
  • 8
    • 48349098875 scopus 로고    scopus 로고
    • An automated CT based lung nodule detection scheme using geometric analysis of signed distance field
    • 18777905 10.1118/1.2948349
    • Pu J, Zheng B, Leader JK et al (2008) An automated CT based lung nodule detection scheme using geometric analysis of signed distance field. Med Phys 35(8): 3453-3461
    • (2008) Med Phys , vol.35 , Issue.8 , pp. 3453-3461
    • Pu, J.1    Zheng, B.2    Leader, J.K.3
  • 9
    • 56649100728 scopus 로고    scopus 로고
    • Computer-aided detection of lung nodules on multidetector row computed tomography using three-dimensional analysis of nodule candidates and their surroundings
    • 10.1007/s11604-008-0272-5
    • Matsumoto S, Ohno Y, Yamagata H et al (2008) Computer-aided detection of lung nodules on multidetector row computed tomography using three-dimensional analysis of nodule candidates and their surroundings. Radiat Med 26(9): 9-562
    • (2008) Radiat Med , vol.26 , Issue.9 , pp. 9-562
    • Matsumoto, S.1    Ohno, Y.2    Yamagata, H.3
  • 10
    • 71049155885 scopus 로고    scopus 로고
    • Asupervised 'lesion-enhancement' filter by use of a massive-training artificial neural network (MTANN) in computer-aided diagnosis (CAD)
    • 19687563 10.1088/0031-9155/54/18/S03
    • Suzuki K (2009) Asupervised 'lesion-enhancement' filter by use of a massive-training artificial neural network (MTANN) in computer-aided diagnosis (CAD). Phys Med Biol 54(18): S31-45
    • (2009) Phys Med Biol , vol.54 , Issue.18 , pp. 31-45
    • Suzuki, K.1
  • 11
    • 68849111865 scopus 로고    scopus 로고
    • A large-scale evaluation of automatic pulmonary nodule detection in chest CT using local image features and k-nearest-neighbour classification
    • 19646913 10.1016/j.media.2009.07.001 1:STN:280:DC%2BD1MrntFelsw%3D%3D
    • Murphy K, van Ginneken B, Schilham AM et al (2009) A large-scale evaluation of automatic pulmonary nodule detection in chest CT using local image features and k-nearest-neighbour classification. Med Image Anal 13(5): 757-770
    • (2009) Med Image Anal , vol.13 , Issue.5 , pp. 757-770
    • Murphy, K.1    Van Ginneken, B.2    Schilham, A.M.3
  • 12
    • 77950460089 scopus 로고    scopus 로고
    • Methodology for automatic detection of lung nodules in computerized tomography images
    • 19709774 10.1016/j.cmpb.2009.07.006
    • Sousa JR, Silva AC, de Paiva AC et al (2010) Methodology for automatic detection of lung nodules in computerized tomography images. Comput Methods Programs Biomed 98(1): 1-14
    • (2010) Comput Methods Programs Biomed , vol.98 , Issue.1 , pp. 1-14
    • Sousa, J.R.1    Silva, A.C.2    De Paiva, A.C.3
  • 13
    • 33745644734 scopus 로고    scopus 로고
    • Computer-aided diagnosis of pulmonary nodules on CT scans: Segmentation and classification using 3D active contours
    • 16898434 10.1118/1.2207129
    • Way TW, Hadjiiski LM, Sahiner B, Chan HP, Cascade PN, Kazerooni EA et al (2006) Computer-aided diagnosis of pulmonary nodules on CT scans: segmentation and classification using 3D active contours. Med Phys 33: 2323-2337
    • (2006) Med Phys , vol.33 , pp. 2323-2337
    • Way, T.W.1    Hadjiiski, L.M.2    Sahiner, B.3    Chan, H.P.4    Cascade, P.N.5    Kazerooni, E.A.6
  • 14
    • 35148823647 scopus 로고    scopus 로고
    • Effect of CAD on radiologists' detection of lung nodules on thoracic CT scans: Observer performance study
    • 65151D
    • Sahiner B, Hadjiiski LM, Chan HP, Shi J, Cascade PN, Kazerooni EA et al (2007) Effect of CAD on radiologists' detection of lung nodules on thoracic CT scans: observer performance study. Proc SPIE Med Imaging 6515(65151D): 1-7
    • (2007) Proc SPIE Med Imaging , vol.6515 , pp. 1-7
    • Sahiner, B.1    Hadjiiski, L.M.2    Chan, H.P.3    Shi, J.4    Cascade, P.N.5    Kazerooni, E.A.6
  • 15
    • 35148871318 scopus 로고    scopus 로고
    • Performance analysis for computer-aided lung nodule detection on LIDC data
    • 65151C
    • Opfer R, Wiemker R (2007) Performance analysis for computer-aided lung nodule detection on LIDC data. Proc SPIE Med Imaging 6515(65151C): 1-9
    • (2007) Proc SPIE Med Imaging , vol.6515 , pp. 1-9
    • Opfer, R.1    Wiemker, R.2
  • 16
    • 68149163602 scopus 로고    scopus 로고
    • A novel multithreshold method for nodule detection in lung CT
    • 19746795 10.1118/1.3160107
    • Golosio B, Masala GL, Piccioli A, Oliva P, Carpinelli M (2009) A novel multithreshold method for nodule detection in lung CT. Med Phys 36(8): 3607-3618
    • (2009) Med Phys , vol.36 , Issue.8 , pp. 3607-3618
    • Golosio, B.1    Masala, G.L.2    Piccioli, A.3    Oliva, P.4    Carpinelli, M.5
  • 17
    • 77951647196 scopus 로고    scopus 로고
    • A new computationally efficient CAD system for pulmonary nodule detection in CT imagery
    • 20346728 10.1016/j.media.2010.02.004
    • Messay T, Hardie R, Rogers S (2010) A new computationally efficient CAD system for pulmonary nodule detection in CT imagery. Med Image Anal 14(3): 390-406
    • (2010) Med Image Anal , vol.14 , Issue.3 , pp. 390-406
    • Messay, T.1    Hardie, R.2    Rogers, S.3
  • 18
    • 79953648703 scopus 로고    scopus 로고
    • Computer-aided detection of lung nodules via 3D fast radial transform, scale space representation, and Zernike MIP classification
    • 21626929 10.1118/1.3560427
    • Riccardi A, Petkov TS, Ferri G, Masotti M, Campanini R (2011) Computer-aided detection of lung nodules via 3D fast radial transform, scale space representation, and Zernike MIP classification. Med Phys 38(4): 1962-1971
    • (2011) Med Phys , vol.38 , Issue.4 , pp. 1962-1971
    • Riccardi, A.1    Petkov, T.S.2    Ferri, G.3    Masotti, M.4    Campanini, R.5
  • 19
    • 84862988310 scopus 로고    scopus 로고
    • Combination of computer-aided detection algorithms for automatic lung nodule identification
    • 10.1007/s11548-011-0637-6
    • Camarlinghi N, Gori I, Retico A, Bellotti R et al (2011) Combination of computer-aided detection algorithms for automatic lung nodule identification. Int J CARS 7(3): 455-464
    • (2011) Int J CARS , vol.7 , Issue.3 , pp. 455-464
    • Camarlinghi, N.1    Gori, I.2    Retico, A.3    Bellotti, R.4
  • 20
    • 80053608049 scopus 로고    scopus 로고
    • A novel computer-aided lung nodule detection system for CT images
    • 21992380 10.1118/1.3633941
    • Tan M, Deklerck R, Jansen B et al (2011) A novel computer-aided lung nodule detection system for CT images. Med Phys 38(10): 5630-5645
    • (2011) Med Phys , vol.38 , Issue.10 , pp. 5630-5645
    • Tan, M.1    Deklerck, R.2    Jansen, B.3
  • 21
    • 43549123731 scopus 로고    scopus 로고
    • Performance analysis of a new computer aided detection system for identifying lung nodules on chest radiographs
    • 18178123 10.1016/j.media.2007.10.004
    • Hardie RC, Rogers SK, Wilson T, Rogers A (2008) Performance analysis of a new computer aided detection system for identifying lung nodules on chest radiographs. Med Image Anal 12(3): 240-258
    • (2008) Med Image Anal , vol.12 , Issue.3 , pp. 240-258
    • Hardie, R.C.1    Rogers, S.K.2    Wilson, T.3    Rogers, A.4
  • 23
    • 0032669269 scopus 로고    scopus 로고
    • Convergence index filter for vector fields
    • 10.1109/83.777084 1:STN:280:DC%2BD1c7gvV2ktg%3D%3D
    • Kobatake H, Hashimoto S (1999) Convergence index filter for vector fields. IEEETrans Image Proc 8(8): 1029-1038
    • (1999) IEEETrans Image Proc , vol.8 , Issue.8 , pp. 1029-1038
    • Kobatake, H.1    Hashimoto, S.2
  • 25
    • 27144489164 scopus 로고    scopus 로고
    • Tutorial on support vector machines for pattern recognition
    • 10.1023/A:1009715923555
    • Burges CJC (1998) Tutorial on support vector machines for pattern recognition. Data Min Knowl Disc 2(2): 121-167
    • (1998) Data Min Knowl Disc , vol.2 , Issue.2 , pp. 121-167
    • Burges, C.J.C.1
  • 26
    • 84878883767 scopus 로고    scopus 로고
    • National cancer imaging archive
    • LIDC lung nodule image database. National cancer imaging archive at https://imaging.nci.nih.gov/ncia/
    • LIDC Lung Nodule Image Database
  • 27
    • 36148941022 scopus 로고    scopus 로고
    • The lung image database consortium (LIDC): Ensuring the integrity of expert-defined
    • 18035275 10.1016/j.acra.2007.08.006
    • Armato SG III, Roberts RY, McNitt-Gray MF, Meyer CR, Reeves AP, McLennan G et al (2007) The lung image database consortium (LIDC): ensuring the integrity of expert-defined. Acad Radiol 14: 1455-1463
    • (2007) Acad Radiol , vol.14 , pp. 1455-1463
    • Armato Iii, S.G.1    Roberts, R.Y.2    McNitt-Gray, M.F.3    Meyer, C.R.4    Reeves, A.P.5    McLennan, G.6
  • 28
    • 36148956597 scopus 로고    scopus 로고
    • The lung image database consortium (LIDC) data collection process for nodule detection and annotation
    • 18035276 10.1016/j.acra.2007.07.021
    • McNitt-Gray MF, Armato SG III, Meyer CR, Reeves AP, McLennan G, Pais RC et al (2007) The lung image database consortium (LIDC) data collection process for nodule detection and annotation. Acad Radiol 14: 1464-1474
    • (2007) Acad Radiol , vol.14 , pp. 1464-1474
    • McNitt-Gray, M.F.1    Armato Iii, S.G.2    Meyer, C.R.3    Reeves, A.P.4    McLennan, G.5    Pais, R.C.6
  • 29
    • 81955163268 scopus 로고    scopus 로고
    • LIBSVM: A library for support vector machines
    • Chang CC, Lin CJ. LIBSVM: a library for support vector machines. Software available at http://www.csie.ntu.edu.tw/cjlin/libsvm/
    • Software
    • Chang, C.C.1    Lin, C.J.2
  • 30
    • 34447285504 scopus 로고    scopus 로고
    • Automated detection of lung nodules in CT images using shape-based generic algorithm
    • 17524617 10.1016/j.compmedimag.2007.03.002
    • Dehmeshki J, Ye X, Lin X, Valdivieso M, Amin H (2007) Automated detection of lung nodules in CT images using shape-based generic algorithm. Comput Med Imaging Graph 31(6): 408-417
    • (2007) Comput Med Imaging Graph , vol.31 , Issue.6 , pp. 408-417
    • Dehmeshki, J.1    Ye, X.2    Lin, X.3    Valdivieso, M.4    Amin, H.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.