메뉴 건너뛰기




Volumn , Issue , 2010, Pages 145-203

Spatial data analysis and geoinformation extraction

Author keywords

[No Author keywords available]

Indexed keywords

DISTRIBUTED COMPUTER SYSTEMS;

EID: 84887545163     PISSN: None     EISSN: None     Source Type: Book    
DOI: 10.1201/b10280     Document Type: Chapter
Times cited : (1)

References (154)
  • 3
    • 4243073047 scopus 로고    scopus 로고
    • Efficient summarization of spatiotemporal events
    • Agouris, P. and A. Stefanidis. 2003. Efficient summarization of spatiotemporal events. Communications of the ACM, 46(1):65-66.
    • (2003) Communications of the ACM , vol.46 , Issue.1 , pp. 65-66
    • Agouris, P.1    Stefanidis, A.2
  • 5
    • 0000974551 scopus 로고
    • Plots of high-dimensional data
    • Andrews, D.F. 1972. Plots of high-dimensional data. Biometrics 29:125-136.
    • (1972) Biometrics , vol.29 , pp. 125-136
    • Andrews, D.F.1
  • 6
    • 85010712709 scopus 로고    scopus 로고
    • Data mining with C4.5 and interactive cartographic visualization
    • eds. N.W. Paton and T. Griffiths, IEEE Computer Society, Los Alamitos, CA
    • Andrienko, G. and N. Andrienko. 1999. Data mining with C4.5 and interactive cartographic visualization. In User Interfaces to Data Intensive Systems, eds. N.W. Paton and T. Griffiths, pp. 162-165. IEEE Computer Society, Los Alamitos, CA.
    • (1999) User Interfaces to Data Intensive Systems , pp. 162-165
    • Andrienko, G.1    Andrienko, N.2
  • 7
    • 0029507498 scopus 로고
    • Local indicators of spatial association-LISA
    • Anselin, L. 1995. Local indicators of spatial association-LISA. Geographical Analysis, 27:93-115.
    • (1995) Geographical Analysis , vol.27 , pp. 93-115
    • Anselin, L.1
  • 8
    • 0000464525 scopus 로고    scopus 로고
    • Interactive techniques and exploratory spatial data analysis
    • eds. P.A. Longley, M.F. Goodchild, D.J. Maguire, and D.W. Rhind, John Wiley & Sons, Inc., New York, NY
    • Anselin, L. 1999. Interactive techniques and exploratory spatial data analysis. In Geographical Information Systems-Principles and Technical Issues, eds. P.A. Longley, M.F. Goodchild, D.J. Maguire, and D.W. Rhind, pp. 253-266. John Wiley & Sons, Inc., New York, NY.
    • (1999) Geographical Information Systems-Principles and Technical Issues , pp. 253-266
    • Anselin, L.1
  • 9
    • 0024185906 scopus 로고
    • Do spatial effects really matter in regression?
    • Anselin, L. and D.A. Griffith. 1988. Do spatial effects really matter in regression? Papers in Regional Science 65(1):11-34.
    • (1988) Papers in Regional Science , vol.65 , Issue.1 , pp. 11-34
    • Anselin, L.1    Griffith, D.A.2
  • 10
    • 26944494689 scopus 로고    scopus 로고
    • Discovery of spatial association rules in geo-referenced census data: A relational mining approach
    • Appice, A., M. Ceci, A. Lanza, F.A. Lisi, and D. Malerba. 2003. Discovery of spatial association rules in geo-referenced census data: A relational mining approach. Intelligent Data Analysis, 7:541-566.
    • (2003) Intelligent Data Analysis , vol.7 , pp. 541-566
    • Appice, A.1    Ceci, M.2    Lanza, A.3    Lisi, F.A.4    Malerba, D.5
  • 13
    • 0039782292 scopus 로고    scopus 로고
    • Structural covariates of U.S. county homicide rates: Incorporating spatial effects
    • Baller, R.D., L. Anselin, S.F. Messner, G. Deane, and D.F. Hawkins. 2001. Structural covariates of U.S. county homicide rates: Incorporating spatial effects. Criminology, 39:561-590.
    • (2001) Criminology , vol.39 , pp. 561-590
    • Baller, R.D.1    Anselin, L.2    Messner, S.F.3    Deane, G.4    Hawkins, D.F.5
  • 14
    • 0022923522 scopus 로고
    • Topographic partition of watersheds with digital elevation models
    • Band, L.E. 1986. Topographic partition of watersheds with digital elevation models. Water Resource Research, 22:15-24.
    • (1986) Water Resource Research , vol.22 , pp. 15-24
    • Band, L.E.1
  • 17
    • 0000913755 scopus 로고
    • Spatial interaction and the statistical analysis of lattice systems (with Discussion)
    • Besag, J. 1974. Spatial interaction and the statistical analysis of lattice systems (with Discussion). Journal of the Royal Statistical Society, Series B, 36:192-236.
    • (1974) Journal of the Royal Statistical Society, Series B , vol.36 , pp. 192-236
    • Besag, J.1
  • 18
    • 0000582521 scopus 로고
    • Statistical analysis of non-lattice data
    • Besag, J. 1975. Statistical analysis of non-lattice data. The Statistician, 24:179-195.
    • (1975) The Statistician , vol.24 , pp. 179-195
    • Besag, J.1
  • 26
    • 0042982228 scopus 로고
    • Effect on classification error of random permutations of features in representing multivariate data by faces
    • Chernoff, H. and M.H. Rizvi. 1975. Effect on classification error of random permutations of features in representing multivariate data by faces. Journal of American Statistical Association, 70:548-554.
    • (1975) Journal of American Statistical Association , vol.70 , pp. 548-554
    • Chernoff, H.1    Rizvi, M.H.2
  • 27
    • 0000750406 scopus 로고    scopus 로고
    • A self-modifying cellular automation model of historical urbanization in the San Francisco Bay area
    • Clarke, K.C., S. Hoppen, and L.J. Gaydos. 1997. A self-modifying cellular automation model of historical urbanization in the San Francisco Bay area. Environment and Planning B, 24:247-261.
    • (1997) Environment and Planning B , vol.24 , pp. 247-261
    • Clarke, K.C.1    Hoppen, S.2    Gaydos, L.J.3
  • 30
    • 14044267553 scopus 로고    scopus 로고
    • Towards an architecture for cognitive vision using qualitative spatiotemporal representations and abduction
    • LNCS
    • Cohn, A., D. Magee, A. Galata, D. Hogg, and S. Hazarika, 2003. Towards an architecture for cognitive vision using qualitative spatiotemporal representations and abduction. Spatial Cognition III, LNCS, 2685:1034-1045.
    • (2003) Spatial Cognition III , vol.2685 , pp. 1034-1045
    • Cohn, A.1    Magee, D.2    Galata, A.3    Hogg, D.4    Hazarika, S.5
  • 31
    • 0027451234 scopus 로고
    • Resource dynamics and vegetation processes: A deterministic model using two-dimensional cellular automata
    • Colasanti, R.L. and J.P. Grime. 1993. Resource dynamics and vegetation processes: A deterministic model using two-dimensional cellular automata. Functional Ecology, 7:169-176.
    • (1993) Functional Ecology , vol.7 , pp. 169-176
    • Colasanti, R.L.1    Grime, J.P.2
  • 32
    • 0033682434 scopus 로고    scopus 로고
    • Real-time tracking of non-rigid objects using mean shift
    • Comaniciu, D., V. Ramesh, and P. Meer. 2000. Real-time tracking of non-rigid objects using mean shift. Proceedings IEEE CVPR’00, pp. 142-149.
    • (2000) Proceedings IEEE CVPR’00 , pp. 142-149
    • Comaniciu, D.1    Ramesh, V.2    Meer, P.3
  • 34
    • 28444480961 scopus 로고    scopus 로고
    • Right-angle rooftop polygon extraction in regularized urban areas: Cutting the corners
    • Croitoru, A. and Y. Doytsher. 2004. Right-angle rooftop polygon extraction in regularized urban areas: Cutting the corners. The Photogrammetric Record, 19(108): 311-341.
    • (2004) The Photogrammetric Record , vol.19 , Issue.108 , pp. 311-341
    • Croitoru, A.1    Doytsher, Y.2
  • 35
    • 85023569589 scopus 로고
    • Multivariate display of geographic data: Applications in earth system science
    • eds. A.M. MacEachren and D.R.F. Taylor, Pergamon, Oxford, UK
    • DiBiase, D., C. Reeves, J. Krygier, A.M. MacEachren, M.V. Weiss, J. Sloan, and M. Detweiller. 1994. Multivariate display of geographic data: Applications in earth system science. In Visualization in Modern Cartography, eds. A.M. MacEachren and D.R.F. Taylor, pp. 287-312. Pergamon, Oxford, UK.
    • (1994) Visualization in Modern Cartography , pp. 287-312
    • DiBiase, D.1    Reeves, C.2    Krygier, J.3    MacEachren, A.M.4    Weiss, M.V.5    Sloan, J.6    Detweiller, M.7
  • 37
    • 0021474037 scopus 로고
    • The radon transform and its properties
    • Durrani, T.S. and D. Bisset. 1984. The radon transform and its properties. Geophysics, 49(8):1180-1187.
    • (1984) Geophysics , vol.49 , Issue.8 , pp. 1180-1187
    • Durrani, T.S.1    Bisset, D.2
  • 38
    • 0001124337 scopus 로고    scopus 로고
    • Cartographic visualization: Exploratory spatial data analysis with local indicators of spatial association using Tcl/Tk and cdv’
    • Dykes, J. 1998. Cartographic visualization: Exploratory spatial data analysis with local indicators of spatial association using Tcl/Tk and cdv’. The Statistician, 47:485-497.
    • (1998) The Statistician , vol.47 , pp. 485-497
    • Dykes, J.1
  • 40
    • 84885618002 scopus 로고    scopus 로고
    • Spatial data mining: A database approach
    • Vol. 33, Springer-Verlag, Berlin
    • Ester, M., H.P. Kriegel, and J. Sander. 1997. Spatial data mining: A database approach. In Advances in Spatial Databases, Vol. 33, pp. 47-66. Springer-Verlag, Berlin.
    • (1997) Advances in Spatial Databases , pp. 47-66
    • Ester, M.1    Kriegel, H.P.2    Sander, J.3
  • 41
    • 0002433547 scopus 로고    scopus 로고
    • From data mining to knowledge discovery-an review
    • eds. U. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusay, AAAI Press/The MIT Press, Cambridge, MA
    • Fayyad, U., G. Piatetsky-Shapiro, and P. Smyth. 1996. From data mining to knowledge discovery-an review. In Advances in Knowledge Discovery, eds. U. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusay, pp. 1-33. AAAI Press/The MIT Press, Cambridge, MA.
    • (1996) Advances in Knowledge Discovery , pp. 1-33
    • Fayyad, U.1    Piatetsky-Shapiro, G.2    Smyth, P.3
  • 42
    • 0032458753 scopus 로고    scopus 로고
    • Computational neural networks: A new paradigm for spatial analysis
    • Fischer, M.M. 1998. Computational neural networks: A new paradigm for spatial analysis. Environment and Planning A, 30:1873-1891.
    • (1998) Environment and Planning A , vol.30 , pp. 1873-1891
    • Fischer, M.M.1
  • 43
    • 0037302573 scopus 로고    scopus 로고
    • Neural network modeling of constrained spatial interaction flows: Design, estimation, and performance issues
    • Fischer, M.M., M. Reismann, and K. Hlavackova-Schindler. 2003. Neural network modeling of constrained spatial interaction flows: Design, estimation, and performance issues. Journal of Regional Science, 43:35-61.
    • (2003) Journal of Regional Science , vol.43 , pp. 35-61
    • Fischer, M.M.1    Reismann, M.2    Hlavackova-Schindler, K.3
  • 46
    • 0027705107 scopus 로고
    • Climate zones of the conterminous United States defined using cluster analysis
    • Fovell, R.G. and M.-Y.C. Fovell. 1993. Climate zones of the conterminous United States defined using cluster analysis. Journal of Climate, 6:2103-2135.
    • (1993) Journal of Climate , vol.6 , pp. 2103-2135
    • Fovell, R.G.1    Fovell, M.-Y.C.2
  • 48
    • 0031597073 scopus 로고    scopus 로고
    • Scatterplots and scenes: Visualization techniques for exploratory spatial analysis
    • Gahegan, M. 1998. Scatterplots and scenes: Visualization techniques for exploratory spatial analysis. Computers, Environment and Urban Systems, 22:43-56.
    • (1998) Computers, Environment and Urban Systems , vol.22 , pp. 43-56
    • Gahegan, M.1
  • 49
    • 0037281210 scopus 로고    scopus 로고
    • Is inductive machine learning just another wild goose (or might it lay the golden egg)?
    • Gahegan, M. 2003. Is inductive machine learning just another wild goose (or might it lay the golden egg)? International Journal of Geographical Information Science, 17:69-92.
    • (2003) International Journal of Geographical Information Science , vol.17 , pp. 69-92
    • Gahegan, M.1
  • 50
    • 0000960565 scopus 로고
    • The contiguity ratio and statistical mapping
    • Geary, R. 1954. The contiguity ratio and statistical mapping. The Incorporated Statistician, 5:115-145.
    • (1954) The Incorporated Statistician , vol.5 , pp. 115-145
    • Geary, R.1
  • 51
    • 0036261283 scopus 로고    scopus 로고
    • Comparative spatial filtering in regression analysis
    • Getis, A. and D.A. Griffith. 2002. Comparative spatial filtering in regression analysis. Geographical Analysis, 34:130-140.
    • (2002) Geographical Analysis , vol.34 , pp. 130-140
    • Getis, A.1    Griffith, D.A.2
  • 52
    • 84977363017 scopus 로고
    • The analysis of spatial association by use of distance statistics
    • Getis, A. and J.K. Ord. 1992. The analysis of spatial association by use of distance statistics. Geographical Analysis, 24:189-206.
    • (1992) Geographical Analysis , vol.24 , pp. 189-206
    • Getis, A.1    Ord, J.K.2
  • 53
    • 0012640510 scopus 로고    scopus 로고
    • Visualization based on the fuzzy ARTMAP neural network for mining remotely sensed data
    • eds. H.J. Miller and J. Han, Taylor & Francis, London and New York
    • Gopal, S., W. Liu, and C. Woodcock. 2001. Visualization based on the fuzzy ARTMAP neural network for mining remotely sensed data. In Geographic Data Mining and Knowledge Discovery, eds. H.J. Miller and J. Han, pp. 315-336. Taylor & Francis, London and New York.
    • (2001) Geographic Data Mining and Knowledge Discovery , pp. 315-336
    • Gopal, S.1    Liu, W.2    Woodcock, C.3
  • 54
    • 0002478960 scopus 로고    scopus 로고
    • Hierarchical classification
    • eds. P. Arabie, L. J. Hubert, and G. D. Soete, World Scientific Publisher, River Edge, NJ
    • Gordon, A.D. 1996. Hierarchical classification. In Clustering and Classification, eds. P. Arabie, L. J. Hubert, and G. D. Soete, pp. 65-122. World Scientific Publisher, River Edge, NJ.
    • (1996) Clustering and Classification , pp. 65-122
    • Gordon, A.D.1
  • 56
    • 0001303071 scopus 로고
    • Is Statistic Inference the geographical name for a wild goose?
    • Gould, P.R. 1970. Is Statistic Inference the geographical name for a wild goose? Economic Geography, 46:439-448.
    • (1970) Economic Geography , vol.46 , pp. 439-448
    • Gould, P.R.1
  • 59
    • 33644947906 scopus 로고    scopus 로고
    • Beyond mule kicks: The Poisson distribution in geographical analysis
    • Griffith D.A. and R. Haining. 2005. Beyond mule kicks: The Poisson distribution in geographical analysis. Geographical Analysis, 38:123-139.
    • (2005) Geographical Analysis , vol.38 , pp. 123-139
    • Griffith, D.A.1    Haining, R.2
  • 61
    • 46649083814 scopus 로고    scopus 로고
    • Regionalization with dynamically constrained agglomerative clustering and partitioning (REDCAP)
    • Guo, D. 2008. Regionalization with dynamically constrained agglomerative clustering and partitioning (REDCAP). International Journal of Geographical Information Science, 22:801-823.
    • (2008) International Journal of Geographical Information Science , vol.22 , pp. 801-823
    • Guo, D.1
  • 62
    • 84856809545 scopus 로고    scopus 로고
    • Multivariate spatial clustering and geovisualization
    • eds. H.J. Miller and J. Han, Taylor & Francis, London and New York
    • Guo, D. 2009. Multivariate spatial clustering and geovisualization. In Geographic Data Mining and Knowledge Discovery, eds. H.J. Miller and J. Han, pp. 325-345. Taylor & Francis, London and New York.
    • (2009) Geographic Data Mining and Knowledge Discovery , pp. 325-345
    • Guo, D.1
  • 64
    • 19944422137 scopus 로고    scopus 로고
    • Multivariate analysis and geovisualization with an integrated geographic knowledge discovery approach
    • Guo, D., M. Gahegan, A.M. MacEachren, and B. Zhou. 2005. Multivariate analysis and geovisualization with an integrated geographic knowledge discovery approach. Cartography and Geographic Information Science, 32:113-132.
    • (2005) Cartography and Geographic Information Science , vol.32 , pp. 113-132
    • Guo, D.1    Gahegan, M.2    MacEachren, A.M.3    Zhou, B.4
  • 65
    • 0141794290 scopus 로고    scopus 로고
    • ICEAGE: Interactive clustering and exploration of large and high-dimensional geodata
    • Guo, D., D. Peuquet, and M. Gahegan. 2003. ICEAGE: Interactive clustering and exploration of large and high-dimensional geodata. GeoInformatica, 7:229-253.
    • (2003) GeoInformatica , vol.7 , pp. 229-253
    • Guo, D.1    Peuquet, D.2    Gahegan, M.3
  • 67
    • 33644582756 scopus 로고    scopus 로고
    • Image-based change detection of aerial objects using differential snakes
    • Bremen, Germany
    • Gyftakis, S., P. Agouris, and A. Stefanidis, 2005. Image-based change detection of aerial objects using differential snakes. Proceedings of ACM-GIS`05, pp. 135-142. Bremen, Germany.
    • (2005) Proceedings of ACM-GIS`05 , pp. 135-142
    • Gyftakis, S.1    Agouris, P.2    Stefanidis, A.3
  • 69
    • 0028576815 scopus 로고
    • Constructing regions for small area analysis: Material deprivation and colorectal cancer
    • Haining, R.P., S.M. Wise, and M. Blake. 1994. Constructing regions for small area analysis: Material deprivation and colorectal cancer. Journal of Public Health Medicine, 16:429-438.
    • (1994) Journal of Public Health Medicine , vol.16 , pp. 429-438
    • Haining, R.P.1    Wise, S.M.2    Blake, M.3
  • 76
    • 33845237122 scopus 로고    scopus 로고
    • Mining co-location patterns with rare events from spatial data sets
    • Huang, Y., J. Pei, and H. Xiong. 2006. Mining co-location patterns with rare events from spatial data sets. Geoinformatica 10:239-260.
    • (2006) Geoinformatica , vol.10 , pp. 239-260
    • Huang, Y.1    Pei, J.2    Xiong, H.3
  • 77
    • 0022140354 scopus 로고
    • The plane with parallel coordinates
    • Inselberg, A. 1985. The plane with parallel coordinates. The Visual Computer 1:69-97.
    • (1985) The Visual Computer , vol.1 , pp. 69-97
    • Inselberg, A.1
  • 82
    • 77951181765 scopus 로고    scopus 로고
    • Understanding climate change patterns with multivariate geovisualization
    • IEEE Press, Miami, FL
    • Jin, H. and D. Guo. 2009. Understanding climate change patterns with multivariate geovisualization. In Proceedings-IEEE International Conference on Data Mining Workshops, pp. 217-222. IEEE Press, Miami, FL.
    • (2009) Proceedings-IEEE International Conference on Data Mining Workshops , pp. 217-222
    • Jin, H.1    Guo, D.2
  • 83
    • 0039793236 scopus 로고
    • NCAR global general circulation model of the atmosphere
    • Kasahara, A. and W.M. Washington. 1967. NCAR global general circulation model of the atmosphere. Monthly Weather Review, 95(7):389-402.
    • (1967) Monthly Weather Review , vol.95 , Issue.7 , pp. 389-402
    • Kasahara, A.1    Washington, W.M.2
  • 84
    • 7444265318 scopus 로고    scopus 로고
    • Bibliography of self-organizing map (SOM) papers: 1981-1997
    • Kaski, S., J. Kangas, and T. Kohonen. 1998. Bibliography of self-organizing map (SOM) papers: 1981-1997. Neural Computing Surveys, 1:102-350.
    • (1998) Neural Computing Surveys , vol.1 , pp. 102-350
    • Kaski, S.1    Kangas, J.2    Kohonen, T.3
  • 86
  • 88
    • 0037095859 scopus 로고    scopus 로고
    • Interactive coupled ensemble: A new coupling strategy for CGCMs
    • Kirtman, B.P. and J. Shukla. 2002. Interactive coupled ensemble: A new coupling strategy for CGCMs. Geophysical Research Letters, 29(10):5.1-5.4
    • (2002) Geophysical Research Letters , vol.29 , Issue.10 , pp. 5.1-5.4
    • Kirtman, B.P.1    Shukla, J.2
  • 89
    • 0030383106 scopus 로고    scopus 로고
    • Finding aggregate proximity relationships and commonalities in spatial data mining
    • Knorr, E.M. and R.T. Ng. 1996. Finding aggregate proximity relationships and commonalities in spatial data mining. IEEE Transactions Knowledge and Data Engineering, 8:884-897.
    • (1996) IEEE Transactions Knowledge and Data Engineering , vol.8 , pp. 884-897
    • Knorr, E.M.1    Ng, R.T.2
  • 94
    • 18244370236 scopus 로고    scopus 로고
    • A space-time permutation scan statistic for the early detection of disease outbreaks
    • Kulldorff, M., R. Heffernan, J. Hartman, R.M. Assunção, and F. Mostashari. 2005. A space-time permutation scan statistic for the early detection of disease outbreaks. PLoS Medicine, 2:216-224.
    • (2005) PLoS Medicine , vol.2 , pp. 216-224
    • Kulldorff, M.1    Heffernan, R.2    Hartman, J.3    Assunção, R.M.4    Mostashari, F.5
  • 98
    • 45049086848 scopus 로고    scopus 로고
    • An adaptive inverse-distance weighting spatial interpolation technique
    • Lu, G.Y. and D.W. Wong. 2008. An adaptive inverse-distance weighting spatial interpolation technique. Computers and Geosciences, 34(9):1044-1055.
    • (2008) Computers and Geosciences , vol.34 , Issue.9 , pp. 1044-1055
    • Lu, G.Y.1    Wong, D.W.2
  • 99
    • 4444278323 scopus 로고    scopus 로고
    • On the use of entropy power for threshold selection
    • Luthon, F., M. Lievin, and F. Faux, 2004. On the use of entropy power for threshold selection, Signal Processing, 84(10):1789-1804.
    • (2004) Signal Processing , vol.84 , Issue.10 , pp. 1789-1804
    • Luthon, F.1    Lievin, M.2    Faux, F.3
  • 100
    • 85013528827 scopus 로고
    • Visualization in modern cartography: Setting the agenda
    • eds. A.M. MacEachren and D.R.F. Taylor, Pergamon, Oxford, UK
    • MacEachren, A. 1994. Visualization in modern cartography: Setting the agenda. In Visualization in Modern Cartography, eds. A.M. MacEachren and D.R.F. Taylor, pp. 1-12. Pergamon, Oxford, UK.
    • (1994) Visualization in Modern Cartography , pp. 1-12
    • MacEachren, A.1
  • 101
    • 0031459752 scopus 로고    scopus 로고
    • Exploratory cartographic visualization: Advancing the agenda
    • MacEachren, A.M. and M.J. Kraak. 1997. Exploratory cartographic visualization: Advancing the agenda. Computers and Geosciences, 23:335-343.
    • (1997) Computers and Geosciences , vol.23 , pp. 335-343
    • MacEachren, A.M.1    Kraak, M.J.2
  • 103
    • 0033374040 scopus 로고    scopus 로고
    • Constructing knowledge from multivariate spatiotemporal data: Integrating geographical visualization with knowledge discovery in database methods
    • MacEachren, A.M., M. Wachowicz, R. Edsall, D. Haug, and R. Masters. 1999. Constructing knowledge from multivariate spatiotemporal data: Integrating geographical visualization with knowledge discovery in database methods. International Journal of Geographical Information Science, 13:311-334.
    • (1999) International Journal of Geographical Information Science , vol.13 , pp. 311-334
    • MacEachren, A.M.1    Wachowicz, M.2    Edsall, R.3    Haug, D.4    Masters, R.5
  • 105
    • 0021622316 scopus 로고
    • Automatic detection of drainage networks from digital elevation models
    • Mark, D.M. 1983. Automatic detection of drainage networks from digital elevation models. Cartographica, 21:168-178.
    • (1983) Cartographica , vol.21 , pp. 168-178
    • Mark, D.M.1
  • 108
    • 27744497356 scopus 로고    scopus 로고
    • Mining association rules in spatio-temporal data: An analysis of urban socioeconomic and land cover change
    • Mennis, J. and J.W. Liu. 2005. Mining association rules in spatio-temporal data: An analysis of urban socioeconomic and land cover change. Transactions in GIS, 9:5-17.
    • (2005) Transactions in GIS , vol.9 , pp. 5-17
    • Mennis, J.1    Liu, J.W.2
  • 110
    • 84926403412 scopus 로고    scopus 로고
    • Geographic data mining and knowledge discovery: An overview
    • eds. H. Miller and J. Han, CRC Press, Taylor & Francis Group, Boca Raton, FL
    • Miller, H. and J. Han. 2009. Geographic data mining and knowledge discovery: An overview. In Geographic Data Mining and Knowledge Discovery, eds. H. Miller and J. Han, pp. 1-26. CRC Press, Taylor & Francis Group, Boca Raton, FL.
    • (2009) Geographic Data Mining and Knowledge Discovery , pp. 1-26
    • Miller, H.1    Han, J.2
  • 111
    • 0013089449 scopus 로고    scopus 로고
    • Geographic Data Mining and Knowledge Discovery: An overview
    • eds. H.J. Miller and J. Han, Taylor & Francis, London and New York
    • Miller, H.J. and J. Han. 2001. Geographic Data Mining and Knowledge Discovery: An overview. In Geographic Data Mining and Knowledge Discovery, eds. H.J. Miller and J. Han, pp. 3-32. Taylor & Francis, London and New York.
    • (2001) Geographic Data Mining and Knowledge Discovery , pp. 3-32
    • Miller, H.J.1    Han, J.2
  • 114
    • 0001455988 scopus 로고    scopus 로고
    • Bayesian mapping of disease
    • eds. W.R. Gilks, S. Richardson, and D.J. Spiegelhalter, Chapman & Hall, New York
    • Mollie A. 1996. Bayesian mapping of disease. In Markov Chain Monte Carlo in Practice, eds. W.R. Gilks, S. Richardson, and D.J. Spiegelhalter, pp. 359-379. Chapman & Hall, New York.
    • (1996) Markov Chain Monte Carlo in Practice , pp. 359-379
    • Mollie, A.1
  • 115
    • 84977312850 scopus 로고
    • Geographic brushing: Enhancing exploratory analysis of the scatterplot matrix
    • Monmonier, M. 1989. Geographic brushing: Enhancing exploratory analysis of the scatterplot matrix. Geographical Analysis, 21:81-84.
    • (1989) Geographical Analysis , vol.21 , pp. 81-84
    • Monmonier, M.1
  • 116
    • 55349093546 scopus 로고    scopus 로고
    • A scale-space clustering method: Mitigating the effect of scale in the analysis of zone-based data
    • Mu, L. and F. Wang. 2008. A scale-space clustering method: Mitigating the effect of scale in the analysis of zone-based data. Annals of the Association of American Geographers, 98:85-101.
    • (2008) Annals of the Association of American Geographers , vol.98 , pp. 85-101
    • Mu, L.1    Wang, F.2
  • 120
    • 0033616875 scopus 로고    scopus 로고
    • Iterative random aggregation of small units using regional measures of spatial autocorrelation for cluster localization
    • Osnes, K. 1999. Iterative random aggregation of small units using regional measures of spatial autocorrelation for cluster localization. Statistics in Medicine, 18:707-725.
    • (1999) Statistics in Medicine , vol.18 , pp. 707-725
    • Osnes, K.1
  • 122
    • 25144444045 scopus 로고
    • Harnessing preattentive perceptual processes in visualization
    • eds. G. Grinstein and H. Levkowitz, Springer, New York
    • Pickett, R.M., G. Grinstein, H. Levkowitz and S. Smith. 1995. Harnessing preattentive perceptual processes in visualization. In Perceptual Issues in Visualization, eds. G. Grinstein and H. Levkowitz, pp. 33-45. Springer, New York.
    • (1995) Perceptual Issues in Visualization , pp. 33-45
    • Pickett, R.M.1    Grinstein, G.2    Levkowitz, H.3    Smith, S.4
  • 124
    • 84944029623 scopus 로고    scopus 로고
    • A probabilistic background model for tracking
    • (ECCV’00), Lecture Notes in Computer Science, Springer-Verlag, Berlin
    • Rittscher, J., J. Kato, S. Joga, and A. Blake, 2000. A probabilistic background model for tracking, European Conference on Computer Vision (ECCV’00), Lecture Notes in Computer Science, Vol. 1843, pp. 336-350, Springer-Verlag, Berlin.
    • (2000) European Conference on Computer Vision , vol.1843 , pp. 336-350
    • Rittscher, J.1    Kato, J.2    Joga, S.3    Blake, A.4
  • 129
    • 0002206851 scopus 로고    scopus 로고
    • Prototypes for the WRF (Weather Research and Forecasting) model. Preprints
    • Ft. American Meteorological Society, Ft. Lauderdale, FL
    • Skamarock, W.C., J.B. Klemp, and J. Dudhia, 2001. Prototypes for the WRF (Weather Research and Forecasting) model. Preprints, Ninth Conference on Mesoscale Processes, pp. J11-J15. Ft. American Meteorological Society, Ft. Lauderdale, FL.
    • (2001) Ninth Conference on Mesoscale Processes , pp. J11-J15
    • Skamarock, W.C.1    Klemp, J.B.2    Dudhia, J.3
  • 130
    • 84944053697 scopus 로고    scopus 로고
    • Discovering spatial co-location patterns: A summary of results
    • Lecture Notes in Computer Science, eds. C. Jensen, M. Schneider, B. Seeger, and V. Tsotras, Springer-Verlag, Berlin
    • Shekhar, S. and Y. Huang. 2001. Discovering spatial co-location patterns: A summary of results. In Advances In Spatial And Temporal Databases, Proceedings, Lecture Notes in Computer Science, eds. C. Jensen, M. Schneider, B. Seeger, and V. Tsotras, pp. 236-256. Springer-Verlag, Berlin.
    • (2001) Advances In Spatial And Temporal Databases, Proceedings , pp. 236-256
    • Shekhar, S.1    Huang, Y.2
  • 132
    • 0028597808 scopus 로고
    • An application of GIS to the measurement of spatial autocorrelation
    • Shen, Q. 1994. An application of GIS to the measurement of spatial autocorrelation. Computer, Environment and Urban Systems, 18:167-191.
    • (1994) Computer, Environment and Urban Systems , vol.18 , pp. 167-191
    • Shen, Q.1
  • 137
    • 0000565591 scopus 로고
    • A computer movie simulating urban growth in the Detroit region
    • Tobler, W.R. 1970. A computer movie simulating urban growth in the Detroit region. Economic Geography, 46:234-240.
    • (1970) Economic Geography , vol.46 , pp. 234-240
    • Tobler, W.R.1
  • 138
    • 0003451737 scopus 로고    scopus 로고
    • PhD thesis, Department of Mathematical Modeling, Section for Digital Signal Processing, University of Denmark
    • Toft, P., 1996. The radon transform-Theory and implementation. PhD thesis, Department of Mathematical Modeling, Section for Digital Signal Processing, University of Denmark.
    • (1996) The radon transform-Theory and implementation
    • Toft, P.1
  • 141
    • 18444372959 scopus 로고    scopus 로고
    • Intelligent distributed surveillance systems: A review
    • Valera, M. and S. Velastin, 2005. Intelligent distributed surveillance systems: A review. IEEE Vision, Image and Signal Processing, 152(2):192-204.
    • (2005) IEEE Vision, Image and Signal Processing , vol.152 , Issue.2 , pp. 192-204
    • Valera, M.1    Velastin, S.2
  • 143
    • 77957066250 scopus 로고    scopus 로고
    • Healthcare access, socioeconomic factors and late-stage cancer diagnosis: An exploratory spatial analysis and public policy implication
    • Wang, F., L. Luo, and S. McLafferty. 2010. Healthcare access, socioeconomic factors and late-stage cancer diagnosis: An exploratory spatial analysis and public policy implication. International Journal of Public Policy, 5:237-258.
    • (2010) International Journal of Public Policy , vol.5 , pp. 237-258
    • Wang, F.1    Luo, L.2    McLafferty, S.3
  • 144
    • 84944178665 scopus 로고
    • Hierarchical grouping to optimise an objective function
    • Ward, J.H. 1963. Hierarchical grouping to optimise an objective function. Journal of the American Statistic Association, 58:236-244.
    • (1963) Journal of the American Statistic Association , vol.58 , pp. 236-244
    • Ward, J.H.1
  • 145
    • 4644281756 scopus 로고    scopus 로고
    • Finding needles in large-scale multivariate data haystacks
    • Ward, M.O. 2004. Finding needles in large-scale multivariate data haystacks. Computer Graphics and Applications, 24:16-19.
    • (2004) Computer Graphics and Applications , vol.24 , pp. 16-19
    • Ward, M.O.1
  • 148
    • 77955436130 scopus 로고    scopus 로고
    • The Modifiable Areal Unit Problem (MAUP)
    • eds. A.S. Fotheringham and P.A. Rogerson, Sage, London
    • Wong, D. 2009. The Modifiable Areal Unit Problem (MAUP). In The SAGE Handbook of Spatial Analysis, eds. A.S. Fotheringham and P.A. Rogerson, pp. 95-112. Sage, London.
    • (2009) The SAGE Handbook of Spatial Analysis , pp. 95-112
    • Wong, D.1
  • 150
    • 0001880968 scopus 로고    scopus 로고
    • Modelling the distribution of plant species using the autologistic regression model
    • Wu, H. and F.W. Huffer. 1997. Modelling the distribution of plant species using the autologistic regression model. Environmental and Ecological Statistics, 4:49-64.
    • (1997) Environmental and Ecological Statistics , vol.4 , pp. 49-64
    • Wu, H.1    Huffer, F.W.2
  • 152
    • 9644269644 scopus 로고    scopus 로고
    • Contour-based object tracking with occlusion handling in video acquired using mobile cameras
    • Yilmaz, A. and M. Shah, 2004. Contour-based object tracking with occlusion handling in video acquired using mobile cameras, IEEE Transactions on Pattern Analysis and Machine Intelligence, 26(11):1531-1536.
    • (2004) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.26 , Issue.11 , pp. 1531-1536
    • Yilmaz, A.1    Shah, M.2
  • 153
    • 1842628607 scopus 로고    scopus 로고
    • The icon image map technique for multivariate geospatial data visualization: Approach and software system
    • Zhang, X. and M. Pazner. 2004. The icon image map technique for multivariate geospatial data visualization: Approach and software system. Cartography and Geographic Information Science, 31:29-41.
    • (2004) Cartography and Geographic Information Science , vol.31 , pp. 29-41
    • Zhang, X.1    Pazner, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.