메뉴 건너뛰기




Volumn 4, Issue , 2011, Pages 641-665

Microbial Fuel Cells

Author keywords

Bioelectrochemical systems; Biofuel cells; Extracellular electron transfer; Microbial electrolysis cells; Microbial fuel cells; Renewable energy; Resource recovery; Wastewater treatment

Indexed keywords


EID: 85042836180     PISSN: None     EISSN: None     Source Type: Book    
DOI: 10.1016/B978-0-444-53199-5.00098-1     Document Type: Chapter
Times cited : (42)

References (162)
  • 4
  • 7
    • 64749102025 scopus 로고    scopus 로고
    • Microbial reductive dechlorination of trichloroethene to ethene with electrodes serving as electron donors without the external addition of redox mediators
    • Aulenta F., Canosa A., Reale P., Rossetti S., Panero S., Majone M. Microbial reductive dechlorination of trichloroethene to ethene with electrodes serving as electron donors without the external addition of redox mediators. Biotechnology and Bioengineering 2009, 103:85-91.
    • (2009) Biotechnology and Bioengineering , vol.103 , pp. 85-91
    • Aulenta, F.1    Canosa, A.2    Reale, P.3    Rossetti, S.4    Panero, S.5    Majone, M.6
  • 8
    • 34247098528 scopus 로고    scopus 로고
    • Electron transfer from a solid-state electrode assisted by methyl viologen sustains efficient microbial reductive dechlorination of TCE
    • Aulenta F., Catervi A., Majone M., Panero S., Reale P., Rossetti S. Electron transfer from a solid-state electrode assisted by methyl viologen sustains efficient microbial reductive dechlorination of TCE. Environmental Science and Technology 2007, 41:2554-2559.
    • (2007) Environmental Science and Technology , vol.41 , pp. 2554-2559
    • Aulenta, F.1    Catervi, A.2    Majone, M.3    Panero, S.4    Reale, P.5    Rossetti, S.6
  • 10
    • 23844474099 scopus 로고    scopus 로고
    • Catalysis of oxygen reduction in PEM fuel cell by seawater biofilm
    • Bergel A., Feron D., Mollica A. Catalysis of oxygen reduction in PEM fuel cell by seawater biofilm. Electrochemistry Communications 2005, 7:900-904.
    • (2005) Electrochemistry Communications , vol.7 , pp. 900-904
    • Bergel, A.1    Feron, D.2    Mollica, A.3
  • 11
    • 0037127004 scopus 로고    scopus 로고
    • Electrode-reducing microorganisms that harvest energy from marine sediments
    • Bond D.R., Holmes D.E., Tender L.M., Lovley D.R. Electrode-reducing microorganisms that harvest energy from marine sediments. Science 2002, 295:483-485.
    • (2002) Science , vol.295 , pp. 483-485
    • Bond, D.R.1    Holmes, D.E.2    Tender, L.M.3    Lovley, D.R.4
  • 12
    • 0037337606 scopus 로고    scopus 로고
    • Electricity production by Geobacter sulfurreducens attached to electrodes
    • Bond D.R., Lovley D.R. Electricity production by Geobacter sulfurreducens attached to electrodes. Applied and Environmental Microbiology 2003, 69:1548-1555.
    • (2003) Applied and Environmental Microbiology , vol.69 , pp. 1548-1555
    • Bond, D.R.1    Lovley, D.R.2
  • 13
    • 17444394516 scopus 로고    scopus 로고
    • Evidence for involvement of an electron shuttle in electricity generation by Geothrix fermentans
    • Bond D.R., Lovley D.R. Evidence for involvement of an electron shuttle in electricity generation by Geothrix fermentans. Applied and Environmental Microbiology 2005, 71:2186-2189.
    • (2005) Applied and Environmental Microbiology , vol.71 , pp. 2186-2189
    • Bond, D.R.1    Lovley, D.R.2
  • 14
    • 47049085042 scopus 로고    scopus 로고
    • Hydrogen production in a single chamber microbial electrolysis cell lacking a membrane
    • Call D., Logan B.E. Hydrogen production in a single chamber microbial electrolysis cell lacking a membrane. Environmental Science and Technology 2008, 42:3401-3406.
    • (2008) Environmental Science and Technology , vol.42 , pp. 3401-3406
    • Call, D.1    Logan, B.E.2
  • 15
    • 64549127249 scopus 로고    scopus 로고
    • High surface area stainless steel brushes as cathodes in microbial electrolysis cells
    • Call D.F., Merrill M.D., Logan B.E. High surface area stainless steel brushes as cathodes in microbial electrolysis cells. Environmental Science and Technology 2009, 43(6):2179-2183.
    • (2009) Environmental Science and Technology , vol.43 , Issue.6 , pp. 2179-2183
    • Call, D.F.1    Merrill, M.D.2    Logan, B.E.3
  • 17
    • 33646701906 scopus 로고    scopus 로고
    • Electrochemically active bacteria (EAB) and mediator-less microbial fuel cells
    • Chang I.S., Moon H., Bretschger O., et al. Electrochemically active bacteria (EAB) and mediator-less microbial fuel cells. Journal of Microbiology and Biotechnology 2006, 16:163-177.
    • (2006) Journal of Microbiology and Biotechnology , vol.16 , pp. 163-177
    • Chang, I.S.1    Moon, H.2    Bretschger, O.3
  • 18
    • 0141542682 scopus 로고    scopus 로고
    • Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells
    • Chaudhuri S.K., Lovley D.R. Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells. Nature Biotechnology 2003, 21:1229-1232.
    • (2003) Nature Biotechnology , vol.21 , pp. 1229-1232
    • Chaudhuri, S.K.1    Lovley, D.R.2
  • 19
    • 36849065283 scopus 로고    scopus 로고
    • Electricity generation from synthetic acid-mine drainage (AMD) water using fuel cell technologies
    • Cheng S., Dempsey B.A., Logan B.E. Electricity generation from synthetic acid-mine drainage (AMD) water using fuel cell technologies. Environmental Science and Technology 2007, 41:8149-8153.
    • (2007) Environmental Science and Technology , vol.41 , pp. 8149-8153
    • Cheng, S.1    Dempsey, B.A.2    Logan, B.E.3
  • 20
    • 33344465903 scopus 로고    scopus 로고
    • Increased performance of single-chamber microbial fuel cells using an improved cathode structure
    • Cheng S., Liu H., Logan B.E. Increased performance of single-chamber microbial fuel cells using an improved cathode structure. Electrochemistry Communications 2006, 8:489-494.
    • (2006) Electrochemistry Communications , vol.8 , pp. 489-494
    • Cheng, S.1    Liu, H.2    Logan, B.E.3
  • 21
    • 30344467807 scopus 로고    scopus 로고
    • Power densities using different cathode catalysts (Pt and CoTMPP) and polymer binders (Nafion and PTFE) in single chamber microbial fuel cells
    • Cheng S., Liu H., Logan B.E. Power densities using different cathode catalysts (Pt and CoTMPP) and polymer binders (Nafion and PTFE) in single chamber microbial fuel cells. Environmental Science and Technology 2006, 40:364-369.
    • (2006) Environmental Science and Technology , vol.40 , pp. 364-369
    • Cheng, S.1    Liu, H.2    Logan, B.E.3
  • 22
    • 33847607418 scopus 로고    scopus 로고
    • Ammonia treatment of carbon cloth anodes to enhance power generation of microbial fuel cells
    • Cheng S., Logan B.E. Ammonia treatment of carbon cloth anodes to enhance power generation of microbial fuel cells. Electrochemistry Communications 2007, 9:492-496.
    • (2007) Electrochemistry Communications , vol.9 , pp. 492-496
    • Cheng, S.1    Logan, B.E.2
  • 23
    • 66249100237 scopus 로고    scopus 로고
    • Direct biological conversion of electrical current into methane by electromethanogenesis
    • Cheng S., Xing D., Call D.F., Logan B.E. Direct biological conversion of electrical current into methane by electromethanogenesis. Environmental Science and Technology 2009, 43:3953-3958.
    • (2009) Environmental Science and Technology , vol.43 , pp. 3953-3958
    • Cheng, S.1    Xing, D.2    Call, D.F.3    Logan, B.E.4
  • 25
    • 35948991776 scopus 로고    scopus 로고
    • Open air biocathode enables effective electricity generation with microbial fuel cells
    • Clauwaert P., Van der Ha D., Boon N., et al. Open air biocathode enables effective electricity generation with microbial fuel cells. Environmental Science and Technology 2007, 41:7564-7569.
    • (2007) Environmental Science and Technology , vol.41 , pp. 7564-7569
    • Clauwaert, P.1    Van der Ha, D.2    Boon, N.3
  • 27
    • 0002906445 scopus 로고
    • The bacterial culture as an electrical half-cell
    • Cohen B. The bacterial culture as an electrical half-cell. Journal of Bacteriology 1931, 21:18-19.
    • (1931) Journal of Bacteriology , vol.21 , pp. 18-19
    • Cohen, B.1
  • 29
    • 35148847389 scopus 로고    scopus 로고
    • Marine microbial fuel cell: Use of stainless steel electrodes as anode and cathode materials
    • Dumas C., Mollica A., Feron D., Basseguy R., Etcheverry L., Bergel A. Marine microbial fuel cell: Use of stainless steel electrodes as anode and cathode materials. Electrochimica Acta 2007, 53:468-473.
    • (2007) Electrochimica Acta , vol.53 , pp. 468-473
    • Dumas, C.1    Mollica, A.2    Feron, D.3    Basseguy, R.4    Etcheverry, L.5    Bergel, A.6
  • 30
    • 56949089588 scopus 로고    scopus 로고
    • Spontaneous electrochemical removal of aqueous sulfide
    • Dutta P.K., Rabaey K., Yuan Z.G., Keller J. Spontaneous electrochemical removal of aqueous sulfide. Water Research 2008, 42:4965-4975.
    • (2008) Water Research , vol.42 , pp. 4965-4975
    • Dutta, P.K.1    Rabaey, K.2    Yuan, Z.G.3    Keller, J.4
  • 31
    • 34548451055 scopus 로고    scopus 로고
    • Enhanced Coulombic efficiency and power density of air-cathode microbial fuel cells with an improved cell configuration
    • Fan Y.Z., Hu H.Q., Liu H. Enhanced Coulombic efficiency and power density of air-cathode microbial fuel cells with an improved cell configuration. Journal of Power Sources 2007, 171:348-354.
    • (2007) Journal of Power Sources , vol.171 , pp. 348-354
    • Fan, Y.Z.1    Hu, H.Q.2    Liu, H.3
  • 34
    • 85042833883 scopus 로고    scopus 로고
    • Current wastewater treatment processes
    • Queensland Water Commission, Brisbane, QLD, T. Gardener, C. Yeates, R. Shaw (Eds.)
    • Foley J., Keller J. Current wastewater treatment processes. Purified Recycled Water for Drinking: The Technical Issues 2008, 57-84. Queensland Water Commission, Brisbane, QLD. T. Gardener, C. Yeates, R. Shaw (Eds.).
    • (2008) Purified Recycled Water for Drinking: The Technical Issues , pp. 57-84
    • Foley, J.1    Keller, J.2
  • 36
    • 85042831576 scopus 로고    scopus 로고
    • Competition and interaction between fermentation and electricity generation in microbial fuel cells anodes
    • In: Proceeding of the 11th International Water Association World Congress on Anaerobic Digestion (AD11). Brisbane, QLD, Australia, 23-27 September 2007.
    • Freguia S, Rabaey K, and Keller J (2007a) Competition and interaction between fermentation and electricity generation in microbial fuel cells anodes. In: Proceeding of the 11th International Water Association World Congress on Anaerobic Digestion (AD11). Brisbane, QLD, Australia, 23-27 September 2007.
    • (2007)
    • Freguia, S.1    Rabaey, K.2    Keller, J.3
  • 37
    • 34247260532 scopus 로고    scopus 로고
    • Electron and carbon balances in microbial fuel cells reveal temporary bacterial storage behavior during electricity generation
    • Freguia S., Rabaey K., Yuan Z., Keller J. Electron and carbon balances in microbial fuel cells reveal temporary bacterial storage behavior during electricity generation. Environmental Science and Technology 2007, 41:2915-2921.
    • (2007) Environmental Science and Technology , vol.41 , pp. 2915-2921
    • Freguia, S.1    Rabaey, K.2    Yuan, Z.3    Keller, J.4
  • 38
    • 35148836695 scopus 로고    scopus 로고
    • Non-catalyzed cathodic oxygen reduction at graphite granules in microbial fuel cells
    • Freguia S., Rabaey K., Yuan Z., Keller J. Non-catalyzed cathodic oxygen reduction at graphite granules in microbial fuel cells. Electrochimica Acta 2007, 53:598-603.
    • (2007) Electrochimica Acta , vol.53 , pp. 598-603
    • Freguia, S.1    Rabaey, K.2    Yuan, Z.3    Keller, J.4
  • 39
    • 40749123642 scopus 로고    scopus 로고
    • Sequential anode-cathode configuration improves cathodic oxygen reduction and effluent quality of microbial fuel cells
    • Freguia S., Rabaey K., Yuan Z., Keller J. Sequential anode-cathode configuration improves cathodic oxygen reduction and effluent quality of microbial fuel cells. Water Research 2008, 42:1387-1396.
    • (2008) Water Research , vol.42 , pp. 1387-1396
    • Freguia, S.1    Rabaey, K.2    Yuan, Z.3    Keller, J.4
  • 40
    • 55349098217 scopus 로고    scopus 로고
    • Syntrophic processes drive the conversion of glucose in microbial fuel cell anodes
    • Freguia S., Rabaey K., Yuan Z., Keller J. Syntrophic processes drive the conversion of glucose in microbial fuel cell anodes. Environmental Science and Technology 2008, 42:7937-7943.
    • (2008) Environmental Science and Technology , vol.42 , pp. 7937-7943
    • Freguia, S.1    Rabaey, K.2    Yuan, Z.3    Keller, J.4
  • 41
    • 0012957636 scopus 로고    scopus 로고
    • Operational parameters affecting the performance of a mediator-less microbial fuel cell
    • Gil G.C., Chang I.S., Kim B.H., et al. Operational parameters affecting the performance of a mediator-less microbial fuel cell. Biosensors and Bioelectronics 2003, 18:327-334.
    • (2003) Biosensors and Bioelectronics , vol.18 , pp. 327-334
    • Gil, G.C.1    Chang, I.S.2    Kim, B.H.3
  • 44
    • 2642520659 scopus 로고    scopus 로고
    • Graphite electrodes as electron donors for anaerobic respiration
    • Gregory K.B., Bond D.R., Lovley D.R. Graphite electrodes as electron donors for anaerobic respiration. Environmental Microbiology 2004, 6:596-604.
    • (2004) Environmental Microbiology , vol.6 , pp. 596-604
    • Gregory, K.B.1    Bond, D.R.2    Lovley, D.R.3
  • 45
    • 27744521813 scopus 로고    scopus 로고
    • Remediation and recovery of uranium from contaminated subsurface environments with electrodes
    • Gregory K.B., Lovley D.R. Remediation and recovery of uranium from contaminated subsurface environments with electrodes. Environmental Science and Technology 2005, 39:8943-8947.
    • (2005) Environmental Science and Technology , vol.39 , pp. 8943-8947
    • Gregory, K.B.1    Lovley, D.R.2
  • 47
    • 40949116712 scopus 로고    scopus 로고
    • The suitability of monopolar and bipolar ion exchange membranes as separators for biological fuel cells
    • Harnisch F., Schroder U., Scholz F. The suitability of monopolar and bipolar ion exchange membranes as separators for biological fuel cells. Environmental Science and Technology 2008, 42:1740-1746.
    • (2008) Environmental Science and Technology , vol.42 , pp. 1740-1746
    • Harnisch, F.1    Schroder, U.2    Scholz, F.3
  • 48
    • 33847030736 scopus 로고    scopus 로고
    • Industrial biotechnology for the production of bio-based chemicals - a cradle-to-grave perspective
    • Hatti-Kaul R., Tornvall U., Gustafsson L., Borjesson P. Industrial biotechnology for the production of bio-based chemicals - a cradle-to-grave perspective. Trends in Biotechnology 2007, 25:119-124.
    • (2007) Trends in Biotechnology , vol.25 , pp. 119-124
    • Hatti-Kaul, R.1    Tornvall, U.2    Gustafsson, L.3    Borjesson, P.4
  • 49
    • 33750443594 scopus 로고    scopus 로고
    • Application of bacterial biocathodes in microbial fuel cells
    • He Z., Angenent L.T. Application of bacterial biocathodes in microbial fuel cells. Electroanalysis 2006, 18:2009-2015.
    • (2006) Electroanalysis , vol.18 , pp. 2009-2015
    • He, Z.1    Angenent, L.T.2
  • 50
    • 22344440626 scopus 로고    scopus 로고
    • Electricity generation from artificial wastewater using an upflow microbial fuel cell
    • He Z., Minteer S.D., Angenent L.T. Electricity generation from artificial wastewater using an upflow microbial fuel cell. Environmental Science and Technology 2005, 39:5262-5267.
    • (2005) Environmental Science and Technology , vol.39 , pp. 5262-5267
    • He, Z.1    Minteer, S.D.2    Angenent, L.T.3
  • 51
    • 34248598452 scopus 로고    scopus 로고
    • Increased power production from a sediment microbial fuel cell with a rotating cathode
    • He Z., Shao H., Angenent L.T. Increased power production from a sediment microbial fuel cell with a rotating cathode. Biosensors and Bioelectronics 2007, 22:3252-3255.
    • (2007) Biosensors and Bioelectronics , vol.22 , pp. 3252-3255
    • He, Z.1    Shao, H.2    Angenent, L.T.3
  • 53
    • 33748616912 scopus 로고    scopus 로고
    • Production of electricity from proteins using a microbial fuel cell
    • Heilmann J., Logan B.E. Production of electricity from proteins using a microbial fuel cell. Water Environment Research 2006, 78:531-537.
    • (2006) Water Environment Research , vol.78 , pp. 531-537
    • Heilmann, J.1    Logan, B.E.2
  • 54
  • 55
    • 2642518174 scopus 로고    scopus 로고
    • Microbial communities associated with electrodes harvesting electricity from a variety of aquatic sediments
    • Holmes D.E., Bond D.R., O'Neill R.A., Reimers C.E., Tender L.R., Lovley D.R. Microbial communities associated with electrodes harvesting electricity from a variety of aquatic sediments. Microbial Ecology 2004, 48:178-190.
    • (2004) Microbial Ecology , vol.48 , pp. 178-190
    • Holmes, D.E.1    Bond, D.R.2    O'Neill, R.A.3    Reimers, C.E.4    Tender, L.R.5    Lovley, D.R.6
  • 56
    • 48349122821 scopus 로고    scopus 로고
    • Electricity generation and treatment of paper recycling wastewater using a microbial fuel cell
    • Huang L., Logan B.E. Electricity generation and treatment of paper recycling wastewater using a microbial fuel cell. Applied Microbiology and Biotechnology 2008, 80:349-355.
    • (2008) Applied Microbiology and Biotechnology , vol.80 , pp. 349-355
    • Huang, L.1    Logan, B.E.2
  • 57
    • 29144460324 scopus 로고    scopus 로고
    • Coaggregation facilitates interspecies hydrogen transfer between Pelotomaculum thermopropionicum and Methanothermobacter thermautotrophicus
    • Ishii S., Kosaka T., Hori K., Hotta Y., Watanabe K. Coaggregation facilitates interspecies hydrogen transfer between Pelotomaculum thermopropionicum and Methanothermobacter thermautotrophicus. Applied and Environmental Microbiology 2005, 71:7838-7845.
    • (2005) Applied and Environmental Microbiology , vol.71 , pp. 7838-7845
    • Ishii, S.1    Kosaka, T.2    Hori, K.3    Hotta, Y.4    Watanabe, K.5
  • 58
    • 40149105259 scopus 로고    scopus 로고
    • Characterization of a filamentous biofilm community established in a cellulose-fed microbial fuel cell
    • Ishii S., Shimoyama T., Hotta Y., Watanabe K. Characterization of a filamentous biofilm community established in a cellulose-fed microbial fuel cell. BMC Microbiology 2008, 8. 10.1186/1471-2180-8-6.
    • (2008) BMC Microbiology , vol.8
    • Ishii, S.1    Shimoyama, T.2    Hotta, Y.3    Watanabe, K.4
  • 60
    • 1942489157 scopus 로고    scopus 로고
    • Construction and operation of a novel mediator- and membrane-less microbial fuel cell
    • Jang J.K., Pham T.H., Chang I.S., et al. Construction and operation of a novel mediator- and membrane-less microbial fuel cell. Process Biochemistry 2004, 39:1007-1012.
    • (2004) Process Biochemistry , vol.39 , pp. 1007-1012
    • Jang, J.K.1    Pham, T.H.2    Chang, I.S.3
  • 61
    • 34547693391 scopus 로고    scopus 로고
    • Electricity generation with simultaneous wastewater treatment by a microbial fuel cell (MFC) with Cu and Cu-Au electrodes
    • Kargi F., Eker S. Electricity generation with simultaneous wastewater treatment by a microbial fuel cell (MFC) with Cu and Cu-Au electrodes. Journal of Chemical Technology and Biotechnology 2007, 82:658-662.
    • (2007) Journal of Chemical Technology and Biotechnology , vol.82 , pp. 658-662
    • Kargi, F.1    Eker, S.2
  • 62
    • 0032814525 scopus 로고    scopus 로고
    • Electrochemical activity of an Fe(III)-reducing bacterium, Shewanella putrefaciens IR-1, in the presence of alternative electron acceptors
    • Kim B.H., Ikeda T., Park H.S., et al. Electrochemical activity of an Fe(III)-reducing bacterium, Shewanella putrefaciens IR-1, in the presence of alternative electron acceptors. Biotechnology Techniques 1999, 13:475-478.
    • (1999) Biotechnology Techniques , vol.13 , pp. 475-478
    • Kim, B.H.1    Ikeda, T.2    Park, H.S.3
  • 63
  • 64
    • 33846842443 scopus 로고    scopus 로고
    • Power generation using different cation, anion, and ultrafiltration membranes in microbial fuel cells
    • Kim J.R., Cheng S., Oh S.-E., Logan B.E. Power generation using different cation, anion, and ultrafiltration membranes in microbial fuel cells. Environmental Science and Technology 2007, 41:1004-1009.
    • (2007) Environmental Science and Technology , vol.41 , pp. 1004-1009
    • Kim, J.R.1    Cheng, S.2    Oh, S.-E.3    Logan, B.E.4
  • 65
    • 33947385817 scopus 로고    scopus 로고
    • Electricity generation and microbial community analysis of alcohol powered microbial fuel cells
    • Kim J.R., Jung S.H., Regan J.M., Logan B.E. Electricity generation and microbial community analysis of alcohol powered microbial fuel cells. Bioresource Technology 2007, 98:2568-2577.
    • (2007) Bioresource Technology , vol.98 , pp. 2568-2577
    • Kim, J.R.1    Jung, S.H.2    Regan, J.M.3    Logan, B.E.4
  • 66
    • 0034610098 scopus 로고    scopus 로고
    • Effect of initial carbon sources on the performance of microbial fuel cells containing Proteus vulgaris
    • Kim N., Choi Y., Jung S., Kim S. Effect of initial carbon sources on the performance of microbial fuel cells containing Proteus vulgaris. Biotechnology and Bioengineering 2000, 70:109-114.
    • (2000) Biotechnology and Bioengineering , vol.70 , pp. 109-114
    • Kim, N.1    Choi, Y.2    Jung, S.3    Kim, S.4
  • 67
    • 0030840908 scopus 로고    scopus 로고
    • Simultaneous COD removal and denitrification of wastewater by bio-electro reactors
    • Kuroda M., Watanabe T., Umedu Y. Simultaneous COD removal and denitrification of wastewater by bio-electro reactors. Water Science and Technology 1997, 35:161-168.
    • (1997) Water Science and Technology , vol.35 , pp. 161-168
    • Kuroda, M.1    Watanabe, T.2    Umedu, Y.3
  • 68
    • 34948813623 scopus 로고    scopus 로고
    • Nutrient cycles and resource management: Implications for the choice of wastewater treatment technology
    • Larsen T.A., Maurer M., Udert K.M., Lienert J. Nutrient cycles and resource management: Implications for the choice of wastewater treatment technology. Water Science and Technology 2007, 56:229-237.
    • (2007) Water Science and Technology , vol.56 , pp. 229-237
    • Larsen, T.A.1    Maurer, M.2    Udert, K.M.3    Lienert, J.4
  • 69
    • 40749115223 scopus 로고    scopus 로고
    • Evaluation of energy-conversion efficiencies in microbial fuel cells (MFCs) utilizing fermentable and non-fermentable substrates
    • Lee H.S., Parameswaran P., Kato-Marcus A., Torres C.I., Rittmann B.E. Evaluation of energy-conversion efficiencies in microbial fuel cells (MFCs) utilizing fermentable and non-fermentable substrates. Water Research 2008, 42:1501-1510.
    • (2008) Water Research , vol.42 , pp. 1501-1510
    • Lee, H.S.1    Parameswaran, P.2    Kato-Marcus, A.3    Torres, C.I.4    Rittmann, B.E.5
  • 70
    • 0037757520 scopus 로고    scopus 로고
    • Use of acetate for enrichment of electrochemically active microorganisms and their 16S rDNA analyses
    • Lee J.Y., Phung N.T., Chang I.S., Kim B.H., Sung H.C. Use of acetate for enrichment of electrochemically active microorganisms and their 16S rDNA analyses. FEMS Microbiology Letters 2003, 223:185-191.
    • (2003) FEMS Microbiology Letters , vol.223 , pp. 185-191
    • Lee, J.Y.1    Phung, N.T.2    Chang, I.S.3    Kim, B.H.4    Sung, H.C.5
  • 71
    • 0013886716 scopus 로고
    • Symposium on bioelectrochemistry of microorganisms. 4. Biochemical fuel cells
    • Lewis K. Symposium on bioelectrochemistry of microorganisms. 4. Biochemical fuel cells. Bacteriological Reviews 1966, 30:101-113.
    • (1966) Bacteriological Reviews , vol.30 , pp. 101-113
    • Lewis, K.1
  • 73
    • 22344440310 scopus 로고    scopus 로고
    • Power generation in fed-batch microbial fuel cells as a function of ionic strength, temperature, and reactor configuration
    • Liu H., Cheng S.A., Logan B.E. Power generation in fed-batch microbial fuel cells as a function of ionic strength, temperature, and reactor configuration. Environmental Science and Technology 2005, 39:5488-5493.
    • (2005) Environmental Science and Technology , vol.39 , pp. 5488-5493
    • Liu, H.1    Cheng, S.A.2    Logan, B.E.3
  • 74
    • 12344306121 scopus 로고    scopus 로고
    • Production of electricity from acetate or butyrate using a single-chamber microbial fuel cell
    • Liu H., Cheng S.A., Logan B.E. Production of electricity from acetate or butyrate using a single-chamber microbial fuel cell. Environmental Science and Technology 2005, 39:658-662.
    • (2005) Environmental Science and Technology , vol.39 , pp. 658-662
    • Liu, H.1    Cheng, S.A.2    Logan, B.E.3
  • 75
    • 20044370112 scopus 로고    scopus 로고
    • Electrochemically assisted microbial production of hydrogen from acetate
    • Liu H., Grot S., Logan B.E. Electrochemically assisted microbial production of hydrogen from acetate. Environmental Science and Technology 2005, 39:4317-4320.
    • (2005) Environmental Science and Technology , vol.39 , pp. 4317-4320
    • Liu, H.1    Grot, S.2    Logan, B.E.3
  • 76
    • 3242707506 scopus 로고    scopus 로고
    • Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane
    • Liu H., Logan B.E. Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane. Environmental Science and Technology 2004, 38:4040-4046.
    • (2004) Environmental Science and Technology , vol.38 , pp. 4040-4046
    • Liu, H.1    Logan, B.E.2
  • 77
    • 1842778990 scopus 로고    scopus 로고
    • Production of electricity during wastewater treatment using a single chamber microbial fuel cell
    • Liu H., Ramnarayanan R., Logan B.E. Production of electricity during wastewater treatment using a single chamber microbial fuel cell. Environmental Science and Technology 2004, 38:2281-2285.
    • (2004) Environmental Science and Technology , vol.38 , pp. 2281-2285
    • Liu, H.1    Ramnarayanan, R.2    Logan, B.E.3
  • 80
    • 34248181574 scopus 로고    scopus 로고
    • Graphite fiber brush anodes for increased power production in air-cathode microbial fuel cells
    • Logan B., Cheng S., Watson V., Estadt G. Graphite fiber brush anodes for increased power production in air-cathode microbial fuel cells. Environmental Science and Technology 2007, 41:3341-3346.
    • (2007) Environmental Science and Technology , vol.41 , pp. 3341-3346
    • Logan, B.1    Cheng, S.2    Watson, V.3    Estadt, G.4
  • 81
    • 57449102625 scopus 로고    scopus 로고
    • Microbial electrolysis cells for high yield hydrogen gas production from organic matter
    • Logan B.E., Call D., Cheng S., et al. Microbial electrolysis cells for high yield hydrogen gas production from organic matter. Environmental Science and Technology 2008, 42:8630-8640.
    • (2008) Environmental Science and Technology , vol.42 , pp. 8630-8640
    • Logan, B.E.1    Call, D.2    Cheng, S.3
  • 83
    • 14644399273 scopus 로고    scopus 로고
    • Electricity generation from cysteine in a microbial fuel cell
    • Logan B.E., Murano C., Scott K., Gray N.D., Head I.M. Electricity generation from cysteine in a microbial fuel cell. Water Research 2005, 39:942-952.
    • (2005) Water Research , vol.39 , pp. 942-952
    • Logan, B.E.1    Murano, C.2    Scott, K.3    Gray, N.D.4    Head, I.M.5
  • 84
    • 33751004376 scopus 로고    scopus 로고
    • Electricity-producing bacterial communities in microbial fuel cells
    • Logan B.E., Regan J.M. Electricity-producing bacterial communities in microbial fuel cells. Trends in Microbiology 2006, 14:512-518.
    • (2006) Trends in Microbiology , vol.14 , pp. 512-518
    • Logan, B.E.1    Regan, J.M.2
  • 85
    • 57049119571 scopus 로고    scopus 로고
    • The microbe electric: Conversion of organic matter to electricity
    • Lovley D.R. The microbe electric: Conversion of organic matter to electricity. Current Opinion in Biotechnology 2008, 19:564-571.
    • (2008) Current Opinion in Biotechnology , vol.19 , pp. 564-571
    • Lovley, D.R.1
  • 87
    • 0024191542 scopus 로고
    • Novel mode of microbial energy-metabolism - organic-carbon oxidation coupled to dissimilatory reduction of iron or manganese
    • Lovley D.R., Phillips E.J.P. Novel mode of microbial energy-metabolism - organic-carbon oxidation coupled to dissimilatory reduction of iron or manganese. Applied and Environmental Microbiology 1988, 54:1472-1480.
    • (1988) Applied and Environmental Microbiology , vol.54 , pp. 1472-1480
    • Lovley, D.R.1    Phillips, E.J.P.2
  • 88
    • 0023498339 scopus 로고
    • Anaerobic production of magnetite by a dissimilatory iron-reducing microorganism
    • Lovley D.R., Stolz J.F., Nord G.L., Phillips E.J.P. Anaerobic production of magnetite by a dissimilatory iron-reducing microorganism. Nature 1987, 330:252-254.
    • (1987) Nature , vol.330 , pp. 252-254
    • Lovley, D.R.1    Stolz, J.F.2    Nord, G.L.3    Phillips, E.J.P.4
  • 91
    • 0026816759 scopus 로고
    • Reduction of nitrate and nitrite in water by immobilized enzymes
    • Mellor R.B., Ronnenberg J., Campbell W.H., Diekmann S. Reduction of nitrate and nitrite in water by immobilized enzymes. Nature 1992, 355:717-719.
    • (1992) Nature , vol.355 , pp. 717-719
    • Mellor, R.B.1    Ronnenberg, J.2    Campbell, W.H.3    Diekmann, S.4
  • 92
    • 28844458951 scopus 로고    scopus 로고
    • Electricity generation from swine wastewater using microbial fuel cells
    • Min B., Kim J.R., Oh S.E., Regan J.M., Logan B.E. Electricity generation from swine wastewater using microbial fuel cells. Water Research 2005, 39:4961-4968.
    • (2005) Water Research , vol.39 , pp. 4961-4968
    • Min, B.1    Kim, J.R.2    Oh, S.E.3    Regan, J.M.4    Logan, B.E.5
  • 93
    • 7444235902 scopus 로고    scopus 로고
    • Continuous electricity generation from domestic wastewater and organic substrates in a flat plate microbial fuel cell
    • Min B., Logan B.E. Continuous electricity generation from domestic wastewater and organic substrates in a flat plate microbial fuel cell. Environmental Science and Technology 2004, 38:5809-5814.
    • (2004) Environmental Science and Technology , vol.38 , pp. 5809-5814
    • Min, B.1    Logan, B.E.2
  • 94
    • 0026740398 scopus 로고
    • Localization of cytochromes to the outer-membrane of anaerobically grown Shewanella putrefaciens MR-1
    • Myers C.R., Myers J.M. Localization of cytochromes to the outer-membrane of anaerobically grown Shewanella putrefaciens MR-1. Journal of Bacteriology 1992, 174:3429-3438.
    • (1992) Journal of Bacteriology , vol.174 , pp. 3429-3438
    • Myers, C.R.1    Myers, J.M.2
  • 95
    • 0024219883 scopus 로고
    • Bacterial manganese reduction and growth with manganese oxide as the sole electron-acceptor
    • Myers C.R., Nealson K.H. Bacterial manganese reduction and growth with manganese oxide as the sole electron-acceptor. Science 1988, 240:1319-1321.
    • (1988) Science , vol.240 , pp. 1319-1321
    • Myers, C.R.1    Nealson, K.H.2
  • 98
    • 2442565737 scopus 로고    scopus 로고
    • Fluorinated polyanilines as superior materials for electrocatalytic anodes in bacterial fuel cells
    • Niessen J., Schroder U., Rosenbaum M., Scholz F. Fluorinated polyanilines as superior materials for electrocatalytic anodes in bacterial fuel cells. Electrochemistry Communications 2004, 6:571-575.
    • (2004) Electrochemistry Communications , vol.6 , pp. 571-575
    • Niessen, J.1    Schroder, U.2    Rosenbaum, M.3    Scholz, F.4
  • 99
    • 4544262280 scopus 로고    scopus 로고
    • Cathode performance as a factor in electricity generation in microbial fuel cells
    • Oh S., Min B., Logan B.E. Cathode performance as a factor in electricity generation in microbial fuel cells. Environmental Science and Technology 2004, 38:4900-4904.
    • (2004) Environmental Science and Technology , vol.38 , pp. 4900-4904
    • Oh, S.1    Min, B.2    Logan, B.E.3
  • 100
    • 33644498839 scopus 로고    scopus 로고
    • Proton exchange membrane and electrode surface areas as factors that affect power generation in microbial fuel cells
    • Oh S.E., Logan B.E. Proton exchange membrane and electrode surface areas as factors that affect power generation in microbial fuel cells. Applied Microbiology and Biotechnology 2006, 70:162-169.
    • (2006) Applied Microbiology and Biotechnology , vol.70 , pp. 162-169
    • Oh, S.E.1    Logan, B.E.2
  • 101
    • 0032904869 scopus 로고    scopus 로고
    • Utilization of electrically reduced neutral red by Actinobacillus succinogenes: Physiological function of neutral red in membrane-driven fumarate reduction and energy conservation
    • Park D.H., Zeikus J.G. Utilization of electrically reduced neutral red by Actinobacillus succinogenes: Physiological function of neutral red in membrane-driven fumarate reduction and energy conservation. Journal of Bacteriology 1999, 181:2403-2410.
    • (1999) Journal of Bacteriology , vol.181 , pp. 2403-2410
    • Park, D.H.1    Zeikus, J.G.2
  • 102
    • 0008049769 scopus 로고    scopus 로고
    • Electricity generation in microbial fuel cells using neutral red as an electronophore
    • Park D.H., Zeikus J.G. Electricity generation in microbial fuel cells using neutral red as an electronophore. Applied and Environmental Microbiology 2000, 66:1292-1297.
    • (2000) Applied and Environmental Microbiology , vol.66 , pp. 1292-1297
    • Park, D.H.1    Zeikus, J.G.2
  • 103
    • 0036320302 scopus 로고    scopus 로고
    • Impact of electrode composition on electricity generation in a single-compartment fuel cell using Shewanella putrefaciens
    • Park D.H., Zeikus J.G. Impact of electrode composition on electricity generation in a single-compartment fuel cell using Shewanella putrefaciens. Applied Microbiology and Biotechnology 2002, 59:58-61.
    • (2002) Applied Microbiology and Biotechnology , vol.59 , pp. 58-61
    • Park, D.H.1    Zeikus, J.G.2
  • 104
    • 0037419705 scopus 로고    scopus 로고
    • Improved fuel cell and electrode designs for producing electricity from microbial degradation
    • Park D.H., Zeikus J.G. Improved fuel cell and electrode designs for producing electricity from microbial degradation. Biotechnology and Bioengineering 2003, 81:348-355.
    • (2003) Biotechnology and Bioengineering , vol.81 , pp. 348-355
    • Park, D.H.1    Zeikus, J.G.2
  • 105
    • 27744467795 scopus 로고    scopus 로고
    • Nitrate reduction using an electrode as direct electron donor in a biofilm-electrode reactor
    • Park H.I., Kim D.K., Choi Y.J., Pak D. Nitrate reduction using an electrode as direct electron donor in a biofilm-electrode reactor. Process Biochemistry 2005, 40:3383-3388.
    • (2005) Process Biochemistry , vol.40 , pp. 3383-3388
    • Park, H.I.1    Kim, D.K.2    Choi, Y.J.3    Pak, D.4
  • 106
    • 33749534171 scopus 로고    scopus 로고
    • Biomass to biofuels, a chemical perspective
    • Petrus L., Noordermeer M.A. Biomass to biofuels, a chemical perspective. Green Chemistry 2006, 8:861-867.
    • (2006) Green Chemistry , vol.8 , pp. 861-867
    • Petrus, L.1    Noordermeer, M.A.2
  • 108
    • 33746067144 scopus 로고    scopus 로고
    • Microbial fuel cells in relation to conventional anaerobic digestion technology
    • Pham T.H., Rabaey K., Aelterman P., et al. Microbial fuel cells in relation to conventional anaerobic digestion technology. Engineering in Life Sciences 2006, 6:285-292.
    • (2006) Engineering in Life Sciences , vol.6 , pp. 285-292
    • Pham, T.H.1    Rabaey, K.2    Aelterman, P.3
  • 109
    • 0030747202 scopus 로고    scopus 로고
    • Luigi Galvani and animal electricity: Two centuries after the foundation of electrophysiology
    • Piccolino M. Luigi Galvani and animal electricity: Two centuries after the foundation of electrophysiology. Trends in Neurosciences 1997, 20:443-448.
    • (1997) Trends in Neurosciences , vol.20 , pp. 443-448
    • Piccolino, M.1
  • 114
    • 0141565121 scopus 로고    scopus 로고
    • A microbial fuel cell capable of converting glucose to electricity at high rate and efficiency
    • Rabaey K., Lissens G., Siciliano S.D., Verstraete W. A microbial fuel cell capable of converting glucose to electricity at high rate and efficiency. Biotechnology Letters 2003, 25:1531-1535.
    • (2003) Biotechnology Letters , vol.25 , pp. 1531-1535
    • Rabaey, K.1    Lissens, G.2    Siciliano, S.D.3    Verstraete, W.4
  • 115
    • 43449084074 scopus 로고    scopus 로고
    • Cathodic oxygen reduction catalyzed by bacteria in microbial fuel cells
    • Rabaey K., Read S.T., Clauwaert P., et al. Cathodic oxygen reduction catalyzed by bacteria in microbial fuel cells. ISME Journal 2008, 2:519-527.
    • (2008) ISME Journal , vol.2 , pp. 519-527
    • Rabaey, K.1    Read, S.T.2    Clauwaert, P.3
  • 116
    • 34248142314 scopus 로고    scopus 로고
    • Microbial ecology meets electrochemistry: Electricity-driven and driving communities
    • Rabaey K., Rodriguez J., Blackall L.L., et al. Microbial ecology meets electrochemistry: Electricity-driven and driving communities. ISME Journal 2007, 1:9-18.
    • (2007) ISME Journal , vol.1 , pp. 9-18
    • Rabaey, K.1    Rodriguez, J.2    Blackall, L.L.3
  • 118
    • 19444367096 scopus 로고    scopus 로고
    • Microbial fuel cells: Novel biotechnology for energy generation
    • Rabaey K., Verstraete W. Microbial fuel cells: Novel biotechnology for energy generation. Trends in Biotechnology 2005, 23:291-298.
    • (2005) Trends in Biotechnology , vol.23 , pp. 291-298
    • Rabaey, K.1    Verstraete, W.2
  • 119
    • 31544452808 scopus 로고    scopus 로고
    • The path forward for biofuels and biomaterials
    • Ragauskas A.J., Williams C.K., Davison B.H., et al. The path forward for biofuels and biomaterials. Science 2006, 311:484-489.
    • (2006) Science , vol.311 , pp. 484-489
    • Ragauskas, A.J.1    Williams, C.K.2    Davison, B.H.3
  • 122
    • 20744456285 scopus 로고    scopus 로고
    • Microbial fuel cell using anaerobic respiration as an anodic reaction and biomineralized manganese as a cathodic reactant
    • Rhoads A., Beyenal H., Lewandowski Z. Microbial fuel cell using anaerobic respiration as an anodic reaction and biomineralized manganese as a cathodic reactant. Environmental Science and Technology 2005, 39:4666-4671.
    • (2005) Environmental Science and Technology , vol.39 , pp. 4666-4671
    • Rhoads, A.1    Beyenal, H.2    Lewandowski, Z.3
  • 123
    • 0034015380 scopus 로고    scopus 로고
    • Bacterial respiration: A flexible process for a changing environment
    • Richardson D.J. Bacterial respiration: A flexible process for a changing environment. Microbiology - SGM 2000, 146:551-571.
    • (2000) Microbiology - SGM , vol.146 , pp. 551-571
    • Richardson, D.J.1
  • 127
    • 34047125848 scopus 로고    scopus 로고
    • Performance of single chamber biocatalyzed electrolysis with different types of ion exchange membranes
    • Rozendal R.A., Hamelers H.V.M., Molenkamp R.J., Buisman C.J.N. Performance of single chamber biocatalyzed electrolysis with different types of ion exchange membranes. Water Research 2007, 41:1984-1994.
    • (2007) Water Research , vol.41 , pp. 1984-1994
    • Rozendal, R.A.1    Hamelers, H.V.M.2    Molenkamp, R.J.3    Buisman, C.J.N.4
  • 130
    • 69549109859 scopus 로고    scopus 로고
    • Efficient hydrogen peroxide generation from organic matter in a bioelectrochemical system
    • Rozendal R.A., Leone E., Keller J., Rabaey K. Efficient hydrogen peroxide generation from organic matter in a bioelectrochemical system. Electrochemistry Communications 2009, 11:1752-1755.
    • (2009) Electrochemistry Communications , vol.11 , pp. 1752-1755
    • Rozendal, R.A.1    Leone, E.2    Keller, J.3    Rabaey, K.4
  • 131
    • 47049087128 scopus 로고    scopus 로고
    • Effect of the type of ion exchange membrane on performance, ion transport, and pH in biocatalyzed electrolysis of wastewater
    • Rozendal R.A., Sleutels T., Hamelers H.V.M., Buisman C.J.N. Effect of the type of ion exchange membrane on performance, ion transport, and pH in biocatalyzed electrolysis of wastewater. Water Science and Technology 2008, 57:1757-1762.
    • (2008) Water Science and Technology , vol.57 , pp. 1757-1762
    • Rozendal, R.A.1    Sleutels, T.2    Hamelers, H.V.M.3    Buisman, C.J.N.4
  • 134
    • 67449147907 scopus 로고    scopus 로고
    • An improved microbial fuel cell with laccase as the oxygen reduction catalyst
    • Schaetzle O., Barriere F., Schroder U. An improved microbial fuel cell with laccase as the oxygen reduction catalyst. Energy and Environmental Science 2009, 2:96-99.
    • (2009) Energy and Environmental Science , vol.2 , pp. 96-99
    • Schaetzle, O.1    Barriere, F.2    Schroder, U.3
  • 135
    • 34447523820 scopus 로고    scopus 로고
    • Anodic electron transfer mechanisms in microbial fuel cells and their energy efficiency
    • Schroder U. Anodic electron transfer mechanisms in microbial fuel cells and their energy efficiency. Physical Chemistry Chemical Physics 2007, 9(21):2619-2629.
    • (2007) Physical Chemistry Chemical Physics , vol.9 , Issue.21 , pp. 2619-2629
    • Schroder, U.1
  • 137
    • 17744405443 scopus 로고    scopus 로고
    • A generation of microbial fuel cells with current outputs boosted by more than one order of magnitude
    • Schroder U., Niessen J., Scholz F. A generation of microbial fuel cells with current outputs boosted by more than one order of magnitude. Angewandte Chemie - International Edition 2003, 42:2880-2883.
    • (2003) Angewandte Chemie - International Edition , vol.42 , pp. 2880-2883
    • Schroder, U.1    Niessen, J.2    Scholz, F.3
  • 138
    • 3843051241 scopus 로고    scopus 로고
    • Space- and earth-based solar power for the growing energy needs of future generations
    • Seboldt W. Space- and earth-based solar power for the growing energy needs of future generations. Acta Astronautica 2004, 55:389-399.
    • (2004) Acta Astronautica , vol.55 , pp. 389-399
    • Seboldt, W.1
  • 139
    • 65049084632 scopus 로고    scopus 로고
    • The use of stainless steel and nickel alloys as low-cost cathodes in microbial electrolysis cells
    • Selembo P.A., Merrill M.D., Logan B.E. The use of stainless steel and nickel alloys as low-cost cathodes in microbial electrolysis cells. Journal of Power Sources 2009, 190(2):271-278.
    • (2009) Journal of Power Sources , vol.190 , Issue.2 , pp. 271-278
    • Selembo, P.A.1    Merrill, M.D.2    Logan, B.E.3
  • 144
    • 51349160449 scopus 로고    scopus 로고
    • Alcohol production through volatile fatty acids reduction with hydrogen as electron donor by mixed cultures
    • Steinbusch K.J.J., Hamelers H.V.M., Buisman C.J.N. Alcohol production through volatile fatty acids reduction with hydrogen as electron donor by mixed cultures. Water Research 2008, 42:4059-4066.
    • (2008) Water Research , vol.42 , pp. 4059-4066
    • Steinbusch, K.J.J.1    Hamelers, H.V.M.2    Buisman, C.J.N.3
  • 147
    • 0036022521 scopus 로고    scopus 로고
    • Harnessing microbially generated power on the seafloor
    • Tender L.M., Reimers C.E., Stecher H.A., et al. Harnessing microbially generated power on the seafloor. Nature Biotechnology 2002, 20:821-825.
    • (2002) Nature Biotechnology , vol.20 , pp. 821-825
    • Tender, L.M.1    Reimers, C.E.2    Stecher, H.A.3
  • 148
    • 34250212127 scopus 로고    scopus 로고
    • Microbial fuel cell operation with continuous biological ferrous iron oxidation of the catholyte
    • Ter Heijne A., Hamelers H.V.M., Buisman C.J.N. Microbial fuel cell operation with continuous biological ferrous iron oxidation of the catholyte. Environmental Science and Technology 2007, 41:4130-4134.
    • (2007) Environmental Science and Technology , vol.41 , pp. 4130-4134
    • Ter Heijne, A.1    Hamelers, H.V.M.2    Buisman, C.J.N.3
  • 149
    • 43049095141 scopus 로고    scopus 로고
    • Performance of non-porous graphite and titanium-based anodes in microbial fuel cells
    • Ter Heijne A., Hamelers H.V.M., Saakes M., Buisman C.J.N. Performance of non-porous graphite and titanium-based anodes in microbial fuel cells. Electrochimica Acta 2008, 53:5697-5703.
    • (2008) Electrochimica Acta , vol.53 , pp. 5697-5703
    • Ter Heijne, A.1    Hamelers, H.V.M.2    Saakes, M.3    Buisman, C.J.N.4
  • 153
    • 47049116935 scopus 로고    scopus 로고
    • Proton transport inside the biofilm limits electrical current generation by anode-respiring bacteria
    • Torres C.I., Marcus A.K., Rittmann B.E. Proton transport inside the biofilm limits electrical current generation by anode-respiring bacteria. Biotechnology and Bioengineering 2008, 100:872-881.
    • (2008) Biotechnology and Bioengineering , vol.100 , pp. 872-881
    • Torres, C.I.1    Marcus, A.K.2    Rittmann, B.E.3
  • 154
    • 0035342183 scopus 로고    scopus 로고
    • Biotechnology and the utilization of biowaste as a resource for bioproduct development
    • van Wyk J.P.H. Biotechnology and the utilization of biowaste as a resource for bioproduct development. Trends in Biotechnology 2001, 19:172-177.
    • (2001) Trends in Biotechnology , vol.19 , pp. 172-177
    • van Wyk, J.P.H.1
  • 156
    • 44749085795 scopus 로고    scopus 로고
    • Microbial fuel cells for simultaneous carbon and nitrogen removal
    • Virdis B., Rabaey K., Yuan Z., Keller J. Microbial fuel cells for simultaneous carbon and nitrogen removal. Water Research 2008, 42:3013-3024.
    • (2008) Water Research , vol.42 , pp. 3013-3024
    • Virdis, B.1    Rabaey, K.2    Yuan, Z.3    Keller, J.4
  • 160
    • 27844504697 scopus 로고    scopus 로고
    • Application of pyrolysed iron(II) phthalocyanine and CoTMPP based oxygen reduction catalysts as cathode materials in microbial fuel cells
    • Zhao F., Harnisch F., Schroder U., Scholz F., Bogdanoff P., Herrmann I. Application of pyrolysed iron(II) phthalocyanine and CoTMPP based oxygen reduction catalysts as cathode materials in microbial fuel cells. Electrochemistry Communications 2005, 7:1405-1410.
    • (2005) Electrochemistry Communications , vol.7 , pp. 1405-1410
    • Zhao, F.1    Harnisch, F.2    Schroder, U.3    Scholz, F.4    Bogdanoff, P.5    Herrmann, I.6
  • 162
    • 85042823499 scopus 로고    scopus 로고
    • - World Research Institute (WRI)
    • - World Research Institute (WRI). http://www.wri.org.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.