메뉴 건너뛰기




Volumn , Issue , 2013, Pages 17-24

Nobody likes mondays: Foreground detection and behavioral patterns analysis in complex urban scenes

Author keywords

Auto encoders; Background subtraction; Long term pattern analysis; Unsupervised feature learning; Video surveillance

Indexed keywords

OBJECT DETECTION; SECURITY SYSTEMS; SIGNAL ENCODING;

EID: 84887497488     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/2510650.2510653     Document Type: Conference Paper
Times cited : (8)

References (32)
  • 3
    • 80053143044 scopus 로고    scopus 로고
    • Recent advanced statistical background modeling for foreground detection: A systematic survey
    • T. Bouwmans. Recent advanced statistical background modeling for foreground detection: A systematic survey. Recent Patents on Computer Science, 4(3):147-176, 2011.
    • (2011) Recent Patents on Computer Science , vol.4 , Issue.3 , pp. 147-176
    • Bouwmans, T.1
  • 5
    • 80052908305 scopus 로고    scopus 로고
    • Evaluation of background subtraction techniques for video surveillance
    • S. Brutzer, B. Hoferlin, and G. Heidemann. Evaluation of background subtraction techniques for video surveillance. CVPR, 2011.
    • (2011) CVPR
    • Brutzer, S.1    Hoferlin, B.2    Heidemann, G.3
  • 6
    • 79960675858 scopus 로고    scopus 로고
    • Robust principal component analysis?
    • E. J. Candes, X. Li, Y. Ma, and J. Wright. Robust principal component analysis? Journal of ACM, 58(1):1-37, 2009.
    • (2009) Journal of ACM , vol.58 , Issue.1 , pp. 1-37
    • Candes, E.J.1    Li, X.2    Ma, Y.3    Wright, J.4
  • 9
    • 84873447131 scopus 로고    scopus 로고
    • Background subtraction using group sparsity and low rank constraint
    • X. Cui, J. Huang, S. Zhang, and D. Metaxas. Background subtraction using group sparsity and low rank constraint. ECCV, 2012.
    • (2012) ECCV
    • Cui, X.1    Huang, J.2    Zhang, S.3    Metaxas, D.4
  • 10
    • 33645146449 scopus 로고    scopus 로고
    • Histograms of oriented gradients for human detection
    • N. Dalal and B. Triggs. Histograms of oriented gradients for human detection. CVPR, 2005.
    • (2005) CVPR
    • Dalal, N.1    Triggs, B.2
  • 11
    • 77952715185 scopus 로고    scopus 로고
    • Robust estimation of foreground in surveillance videos by sparse error estimation
    • M. Dikmen and T. S. Huang. Robust estimation of foreground in surveillance videos by sparse error estimation. ICPR, 2008.
    • (2008) ICPR
    • Dikmen, M.1    Huang, T.S.2
  • 14
    • 34948882282 scopus 로고    scopus 로고
    • Consistent temporal variations in many outdoor scenes
    • N. Jacobs, N. Roman, and R. Pless. Consistent temporal variations in many outdoor scenes. CVPR, 2007.
    • (2007) CVPR
    • Jacobs, N.1    Roman, N.2    Pless, R.3
  • 15
    • 77956008040 scopus 로고    scopus 로고
    • What's going on? Discovering spatio-temporal dependencies in dynamic scenes
    • D. Kuettel, M. D. Breitenstein, L. V. Gool, and V. Ferrari. What's going on? Discovering spatio-temporal dependencies in dynamic scenes. CVPR, 2010.
    • (2010) CVPR
    • Kuettel, D.1    Breitenstein, M.D.2    Gool, L.V.3    Ferrari, V.4
  • 16
    • 84898442935 scopus 로고    scopus 로고
    • Global behaviour inference using probabilistic latent semantic analysis
    • J. Li, S. Gong, and T. Xiang. Global behaviour inference using probabilistic latent semantic analysis. BMVC, 2008.
    • (2008) BMVC
    • Li, J.1    Gong, S.2    Xiang, T.3
  • 18
    • 51949106645 scopus 로고    scopus 로고
    • Self-taught learning: Transfer learning from unlabeled data
    • R. Raina, A. Battle, H. Lee, B. Packer, and A. Y. Ng. Self-taught learning: Transfer learning from unlabeled data. ICML, 2007.
    • (2007) ICML
    • Raina, R.1    Battle, A.2    Lee, H.3    Packer, B.4    Ng, A.Y.5
  • 19
    • 84872279270 scopus 로고    scopus 로고
    • Improved foreground detection via block-based classifier cascade with probabilistic decision integration
    • V. Reddy, C. Sanderson, and B. C. Lovell. Improved foreground detection via block-based classifier cascade with probabilistic decision integration. IEEE Transactions on Circuits and Systems for Video Technology, 23(1):83-93, 2013.
    • (2013) IEEE Transactions on Circuits and Systems for Video Technology , vol.23 , Issue.1 , pp. 83-93
    • Reddy, V.1    Sanderson, C.2    Lovell, B.C.3
  • 21
    • 84876218917 scopus 로고    scopus 로고
    • Disentangling factors of variation for facial expression recognition
    • S. Rifai, Y. Bengio, A. Courville, P. Vincent, and M. Mirza. Disentangling factors of variation for facial expression recognition. ECCV, 2012.
    • (2012) ECCV
    • Rifai, S.1    Bengio, Y.2    Courville, A.3    Vincent, P.4    Mirza, M.5
  • 23
    • 84877789646 scopus 로고    scopus 로고
    • Convolutional-recursive deep learning for 3d object classification
    • R. Socher, B. Huval, B. Bhat, C. D. Manning, and A. Y. Ng. Convolutional-recursive deep learning for 3d object classification. NIPS, 2012.
    • (2012) NIPS
    • Socher, R.1    Huval, B.2    Bhat, B.3    Manning, C.D.4    Ng, A.Y.5
  • 24
    • 0032634283 scopus 로고    scopus 로고
    • Adaptive background mixture models for real-time tracking
    • C. Stauffer and W. E. L. Grimson. Adaptive background mixture models for real-time tracking. CVPR, 1999.
    • (1999) CVPR
    • Stauffer, C.1    Grimson, W.E.L.2
  • 25
    • 0033285765 scopus 로고    scopus 로고
    • Wallflowers: Principles and practise of background maintainance
    • K. Toyama, J. Krumm, B. Brumitt, and B. Meyers. Wallflowers: Principles and practise of background maintainance. ICCV, 1999.
    • (1999) ICCV
    • Toyama, K.1    Krumm, J.2    Brumitt, B.3    Meyers, B.4
  • 26
    • 80052906448 scopus 로고    scopus 로고
    • Efficient highly over-complete sparse coding using a mixture model
    • J. Yang, K. Yu, and T. Huang. Efficient highly over-complete sparse coding using a mixture model. ECCV, 2010.
    • (2010) ECCV
    • Yang, J.1    Yu, K.2    Huang, T.3
  • 28
    • 84860189704 scopus 로고    scopus 로고
    • Solving inverse problems with piecewise linear estimators: From gaussian mixture models to structured sparsity
    • G. Yu, G. Sapiro, and S. Mallat. Solving inverse problems with piecewise linear estimators: from gaussian mixture models to structured sparsity. IEEE Transactions on Image Processing, 21(5):2481-2499, 2012.
    • (2012) IEEE Transactions on Image Processing , vol.21 , Issue.5 , pp. 2481-2499
    • Yu, G.1    Sapiro, G.2    Mallat, S.3
  • 29
    • 84856686379 scopus 로고    scopus 로고
    • Adaptive deconvolutional networks for mid and high level feature learning
    • M. Zeiler, G. Taylor, and R. Fergus. Adaptive deconvolutional networks for mid and high level feature learning. ICCV, 2011.
    • (2011) ICCV
    • Zeiler, M.1    Taylor, G.2    Fergus, R.3
  • 32
    • 10044240378 scopus 로고    scopus 로고
    • Improved adaptive gaussian mixture model for background subtraction
    • Z. Zivkovic. Improved adaptive gaussian mixture model for background subtraction. ICPR, 2004.
    • (2004) ICPR
    • Zivkovic, Z.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.