메뉴 건너뛰기




Volumn , Issue , 2009, Pages 1243-1250

Hunting nessie - Real-time abnormality detection from webcams

Author keywords

[No Author keywords available]

Indexed keywords

ABNORMALITY DETECTION; DATA REPRESENTATIONS; DATA-DRIVEN; EXPLICIT MODELS; FRAME-RATE; IMAGE FEATURES; INCREMENTAL LEARNING; NEAREST NEIGHBOUR; OBJECT TRACKING; SCENE DETECTION; UNSUPERVISED METHOD; WEBCAM DATA; WEBCAMS;

EID: 77953224786     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICCVW.2009.5457468     Document Type: Conference Paper
Times cited : (50)

References (33)
  • 1
    • 77953201076 scopus 로고    scopus 로고
    • ©Dan Blake 01/17
    • Loch Ness Monster, ©Dan Blake. http://www.lochness. co.uk/livecam/lochnessmonster.html, 2009/01/17.
    • (2009)
  • 2
    • 77953184536 scopus 로고    scopus 로고
    • 02/02 - 2009/03/02
    • Loch Ness Webcam. http://www.lochness.co.uk/ livecam/img/lochness.jpg, 2009/02/02 - 2009/03/02.
    • (2009)
  • 3
    • 77953208538 scopus 로고    scopus 로고
    • Nessie
    • Nessie, the Loch Ness Monster. http://en.wikipedia.org/wiki/Loch-Ness- Monster.
    • The Loch Ness Monster
  • 4
    • 77953223348 scopus 로고    scopus 로고
    • 04/01 - 2008/05/20
    • Time Square Webcam. http://images.earthcam.com/ ec-metros/ourcams/ mpstudiosouth.jpg, 2008/04/01 - 2008/05/20.
    • (2008)
  • 5
    • 39549091484 scopus 로고    scopus 로고
    • Robust realtime unusual event detection using multiple fixed-location monitors
    • A. Adam, E. Rivlin, I. Shimshoni, and D. Reinitz. Robust realtime unusual event detection using multiple fixed-location monitors. PAMI, 30(3):555-560, 2008.
    • (2008) PAMI , vol.30 , Issue.3 , pp. 555-560
    • Adam, A.1    Rivlin, E.2    Shimshoni, I.3    Reinitz, D.4
  • 7
    • 33645146449 scopus 로고    scopus 로고
    • Histograms of oriented gradients for human detection
    • N. Dalal and B. Triggs. Histograms of oriented gradients for human detection. In CVPR, 2005.
    • (2005) CVPR
    • Dalal, N.1    Triggs, B.2
  • 8
    • 54749133522 scopus 로고    scopus 로고
    • How close are we to solving the problem of automated visual surveilla @nce?
    • H. Dee and S. Velastin. How close are we to solving the problem of automated visual surveilla @nce? Machine Vision and Applications, 19(5-6):329-343, 2008.
    • (2008) Machine Vision and Applications , vol.19 , Issue.5-6 , pp. 329-343
    • Dee, H.1    Velastin, S.2
  • 9
    • 50649117726 scopus 로고    scopus 로고
    • Learning globally-consistent local distance functions for shape-based image retrieval and classification
    • A. Frome, Y. Singer, F. Sha, and J. Malik. Learning globally-consistent local distance functions for shape-based image retrieval and classification. In ICCV, 2007.
    • (2007) ICCV
    • Frome, A.1    Singer, Y.2    Sha, F.3    Malik, J.4
  • 11
    • 0033556908 scopus 로고    scopus 로고
    • An on-line agglomerative clustering method for nonstationary data
    • I. D. Guedalia, M. London, and M. Werman. An on-line agglomerative clustering method for nonstationary data. Neural Computation, 11(2):521-540, 1999.
    • (1999) Neural Computation , vol.11 , Issue.2 , pp. 521-540
    • Guedalia, I.D.1    London, M.2    Werman, M.3
  • 12
    • 36949030203 scopus 로고    scopus 로고
    • Scene completion using millions of photographs
    • J. Hays and A. A. Efros. Scene completion using millions of photographs. SIGGRAPH, 2007.
    • (2007) SIGGRAPH
    • Hays, J.1    Efros, A.A.2
  • 13
    • 33746576905 scopus 로고    scopus 로고
    • A system for learning statistical motion patterns
    • W. Hu, X. Xiao, Z. Fu, D. Xie, F.-T. Tan, and S. Maybank. A system for learning statistical motion patterns. PAMI, 28(9):1450-1464, 2006.
    • (2006) PAMI , vol.28 , Issue.9 , pp. 1450-1464
    • Hu, W.1    Xiao, X.2    Fu, Z.3    Xie, D.4    Tan, F.-T.5    Maybank, S.6
  • 14
    • 34948882282 scopus 로고    scopus 로고
    • Consistent temporal variations in many outdoor scenes
    • N. Jacobs, N. Roman, and R. Pless. Consistent temporal variations in many outdoor scenes. In CVPR, 2007.
    • (2007) CVPR
    • Jacobs, N.1    Roman, N.2    Pless, R.3
  • 15
    • 0030216085 scopus 로고    scopus 로고
    • Learning the distribution of object trajectories for event recognition
    • N. Johnson and D. Hogg. Learning the distribution of object trajectories for event recognition. In BMVC, 1996.
    • (1996) BMVC
    • Johnson, N.1    Hogg, D.2
  • 16
    • 67349195046 scopus 로고    scopus 로고
    • What does the sky tell us about the camera?
    • J. Lalonde, S. Narasimhan, and A. Efros. What does the sky tell us about the camera? In ECCV, 2008.
    • (2008) ECCV
    • Lalonde, J.1    Narasimhan, S.2    Efros, A.3
  • 17
    • 33845572523 scopus 로고    scopus 로고
    • Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories
    • S. Lazebnik, C. Schmid, and J. Ponce. Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories. In CVPR, 2006.
    • (2006) CVPR
    • Lazebnik, S.1    Schmid, C.2    Ponce, J.3
  • 18
    • 74049163010 scopus 로고    scopus 로고
    • Scene segmentation for behaviour correlation
    • J. Li, S. Gong, and T. Xiang. Scene segmentation for behaviour correlation. In ECCV, 2008.
    • (2008) ECCV
    • Li, J.1    Gong, S.2    Xiang, T.3
  • 19
    • 20444410793 scopus 로고    scopus 로고
    • Learning semantic scene models from observing activity in visual surveillance
    • D. Makris and T. Ellis. Learning semantic scene models from observing activity in visual surveillance. Trans. on Systems, Man, and Cybernetics, 35(3):397-408, 2005.
    • (2005) Trans. on Systems, Man, and Cybernetics , vol.35 , Issue.3 , pp. 397-408
    • Makris, D.1    Ellis, T.2
  • 20
    • 34948866276 scopus 로고    scopus 로고
    • Learning visual similarity measures for comparing never seen objects
    • E. Nowak and F. Jurie. Learning visual similarity measures for comparing never seen objects. In CVPR, 2007.
    • (2007) CVPR
    • Nowak, E.1    Jurie, F.2
  • 21
    • 0034245149 scopus 로고    scopus 로고
    • A bayesian computer vision system for modeling human interactions
    • N. Oliver, B. Rosario, and A. Pentland. A bayesian computer vision system for modeling human interactions. PAMI, 22(8):831-843, 2000.
    • (2000) PAMI , vol.22 , Issue.8 , pp. 831-843
    • Oliver, N.1    Rosario, B.2    Pentland, A.3
  • 22
    • 50649086537 scopus 로고    scopus 로고
    • High-dimensional feature matching: Employing the concept of meaningful nearest neighbors
    • D. Omercevic, O. Drbohlav, and A. Leonardis. High-dimensional feature matching: Employing the concept of meaningful nearest neighbors. In ICCV, 2007.
    • (2007) ICCV
    • Omercevic, D.1    Drbohlav, O.2    Leonardis, A.3
  • 23
    • 17044376078 scopus 로고    scopus 로고
    • Subspace clustering for high dimensional data: A review
    • L. Parsons, E. Haque, and H. Liu. Subspace clustering for high dimensional data: A review. SIGKDD Explorations, 6(1):90, 2004.
    • (2004) SIGKDD Explorations , vol.6 , Issue.1 , pp. 90
    • Parsons, L.1    Haque, E.2    Liu, H.3
  • 24
    • 51949105132 scopus 로고    scopus 로고
    • Lost in quantization: Improving particular object retrieval in large scale image databases
    • J. Philbin, O. Chum, M. Isard, J. Sivic, and A. Zisserman. Lost in quantization: Improving particular object retrieval in large scale image databases. In CVPR, 2008.
    • (2008) CVPR
    • Philbin, J.1    Chum, O.2    Isard, M.3    Sivic, J.4    Zisserman, A.5
  • 26
    • 0033189324 scopus 로고    scopus 로고
    • Similarity measures
    • S. Santini and R. Jain. Similarity measures. PAMI, 21(9):871-883, 1999.
    • (1999) PAMI , vol.21 , Issue.9 , pp. 871-883
    • Santini, S.1    Jain, R.2
  • 28
    • 0034244889 scopus 로고    scopus 로고
    • Learning patterns of activity using real-time tracking
    • C. Stauffer and W. E. L. Grimson. Learning patterns of activity using real-time tracking. PAMI, 22(8):747-757, 2000.
    • (2000) PAMI , vol.22 , Issue.8 , pp. 747-757
    • Stauffer, C.1    Grimson, W.E.L.2
  • 30
    • 54749092170 scopus 로고    scopus 로고
    • 80 million tiny images: A large database for non-parametric object and scene recognition
    • A. Torralba, R. Fergus, and W. T. Freeman. 80 million tiny images: a large database for non-parametric object and scene recognition. PAMI, 30(11):1958-1970, 2008.
    • (2008) PAMI , vol.30 , Issue.11 , pp. 1958-1970
    • Torralba, A.1    Fergus, R.2    Freeman, W.T.3
  • 31
    • 51949084186 scopus 로고    scopus 로고
    • Trajectory analysis and semantic region modeling using a nonparametric bayesian model
    • X. Wang, K. Ma, G. Ng, and W. Grimson. Trajectory analysis and semantic region modeling using a nonparametric bayesian model. In CVPR, 2008.
    • (2008) CVPR
    • Wang, X.1    Ma, K.2    Ng, G.3    Grimson, W.4
  • 32
    • 0034844255 scopus 로고    scopus 로고
    • Deriving intrinsic images from image sequences
    • Y.Weiss. Deriving intrinsic images from image sequences. In ICCV, 2001.
    • (2001) ICCV
    • Weiss, Y.1
  • 33
    • 5044228350 scopus 로고    scopus 로고
    • Detecting unusual activity in video
    • H. Zhong, J. Shi, and M. Visontai. Detecting unusual activity in video. In CVPR, 2004.
    • (2004) CVPR
    • Zhong, H.1    Shi, J.2    Visontai, M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.