메뉴 건너뛰기




Volumn 19, Issue 12, 2013, Pages 2703-2712

Characterizing and visualizing predictive uncertainty in numerical ensembles through bayesian model averaging

Author keywords

Numerical ensembles; Statistical visualization; Uncertainty visualization

Indexed keywords

BAYESIAN FRAMEWORKS; BAYESIAN MODEL AVERAGING; ENSEMBLE FORECASTING; INDIVIDUAL MODELS; NUMERICAL ENSEMBLES; PREDICTIVE UNCERTAINTY; STATISTICAL VISUALIZATIONS; UNCERTAINTY VISUALIZATION;

EID: 84886700438     PISSN: 10772626     EISSN: None     Source Type: Journal    
DOI: 10.1109/TVCG.2013.138     Document Type: Article
Times cited : (25)

References (49)
  • 1
    • 0025681550 scopus 로고
    • The concept of probability in safety assessments of technological systems
    • G. Apostolakis. The concept of probability in safety assessments of technological systems. Science, 250(4986):1359-1364, 1990. (Pubitemid 120031846)
    • (1990) Science , vol.250 , Issue.4986 , pp. 1359-1364
    • Apostolakis, G.1
  • 3
    • 33749425393 scopus 로고    scopus 로고
    • Texture-based visualization of uncertainty in flow fields
    • R. P. Botchen, D. Weiskopf, and T. Ertl. Texture-based visualization of uncertainty in flow fields. In IEEE Visualization, pages 647-654, 2005.
    • (2005) IEEE Visualization , pp. 647-654
    • Botchen, R.P.1    Weiskopf, D.2    Ertl, T.3
  • 4
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • L. Breiman. Bagging predictors. Mach. Learning, 24(2):123-140, 1996. (Pubitemid 126724382)
    • (1996) Machine Learning , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 5
    • 60949093256 scopus 로고    scopus 로고
    • Development and application of reduced-order modeling procedures for subsurface flow simulation
    • M. A. Cardoso, L. J. Durlofsky, and P. Sarma. Development and application of reduced-order modeling procedures for subsurface flow simulation. In Int. J. Numer. Meth. Engng, volume 77, pages 1322-1350, 2009.
    • (2009) Int. J. Numer. Meth. Engng , vol.77 , pp. 1322-1350
    • Cardoso, M.A.1    Durlofsky, L.J.2    Sarma, P.3
  • 6
    • 2542484580 scopus 로고    scopus 로고
    • Comparing bayes model averaging and stacking when model approximation error cannot be ignored
    • B. Clarke. Comparing bayes model averaging and stacking when model approximation error cannot be ignored. The Journal of Machine Learning Research, 4:683-712, 2003.
    • (2003) The Journal of Machine Learning Research , vol.4 , pp. 683-712
    • Clarke, B.1
  • 8
    • 0031459299 scopus 로고    scopus 로고
    • Modeling and visualizing multiple spatial uncertainties
    • T. J. Davis and K. C. Peter. Modeling and visualizing multiple spatial uncertainties. Computers & Geosciences, 23(4):397-408, 1997.
    • (1997) Computers & Geosciences , vol.23 , Issue.4 , pp. 397-408
    • Davis, T.J.1    Peter, K.C.2
  • 9
    • 0031988576 scopus 로고    scopus 로고
    • Model uncertainty and model inaccuracy
    • PII S0951832097001373
    • J. Devooght. Model uncertainty and model inaccuracy. Reliability Engi- neering and System Safety, 59(2):171 - 185, 1998. (Pubitemid 128393934)
    • (1998) Reliability Engineering and System Safety , vol.59 , Issue.2 , pp. 171-185
    • Devooght, J.1
  • 10
    • 0036531431 scopus 로고    scopus 로고
    • Visualizing scalar volumetric data with uncertainty
    • DOI 10.1016/S0097-8493(02)00055-9, PII S0097849302000559
    • S. Djurcilov, K. Kim, P. Lermusiaux, and A. Pang. Visualizing scalar volumetric data with uncertainty. Comput. & Graphics, 26:239-248, 2002. (Pubitemid 34545587)
    • (2002) Computers and Graphics (Pergamon) , vol.26 , Issue.2 , pp. 239-248
    • Djurcilov, S.1    Kim, K.2    Lermusiaux, P.3    Pang, A.4
  • 11
    • 33644753894 scopus 로고    scopus 로고
    • Visualizing MR diffusion tensor fields by dynamic fiber tracking and uncertainty mapping
    • DOI 10.1016/j.cag.2006.01.031, PII S0097849306000331
    • H.-H. Ehricke, U. Klose, and W. Grodd. Visualizing MR diffusion tensor fields by dynamic fiber tracking and uncertainty mapping. Comput. & Graphics, 30(2):255-264, April 2006. (Pubitemid 43344323)
    • (2006) Computers and Graphics (Pergamon) , vol.30 , Issue.2 , pp. 255-264
    • Ehricke, H.-H.1    Klose, U.2    Grodd, W.3
  • 12
    • 50849101382 scopus 로고    scopus 로고
    • The Dantzig selector: Statistical estimation when p is much larger than n
    • M. P. Friedlander and M. A. Saunders. The Dantzig selector: statistical estimation when p is much larger than n. Annals of Statistics, 35(6):2385-2391, 2007.
    • (2007) Annals of Statistics , vol.35 , Issue.6 , pp. 2385-2391
    • Friedlander, M.P.1    Saunders, M.A.2
  • 13
    • 78649689824 scopus 로고    scopus 로고
    • Model selection in medical research: A simulation study comparing Bayesian model averaging and stepwise regression
    • A. Genell, S. Nemes, G. Steineck, and P. W. Dickman. Model selection in medical research: a simulation study comparing Bayesian model averaging and stepwise regression. BMC medical research methodology, 10:100-108, 2010.
    • (2010) BMC Medical Research Methodology , vol.10 , pp. 100-108
    • Genell, A.1    Nemes, S.2    Steineck, G.3    Dickman, P.W.4
  • 14
    • 0002527817 scopus 로고    scopus 로고
    • The interpretation of mallows's cp statistic
    • S. G. Gilmour. The Interpretation of Mallows's Cp Statistic. J. of the Royal Statistical Society, 45(1):49-56, 1996.
    • (1996) J. of the Royal Statistical Society , vol.45 , Issue.1 , pp. 49-56
    • Gilmour, S.G.1
  • 15
    • 0036448560 scopus 로고    scopus 로고
    • Probabilistic surfaces: Point based primitives to show surface uncertainty
    • G. Grigoryan and P. Rheingans. Probabilistic surfaces: Point based primitives to show surface uncertainty. In Proceedings of IEEE Visualization 2002, pages 147-153, 2002.
    • (2002) Proceedings of IEEE Visualization 2002 , pp. 147-153
    • Grigoryan, G.1    Rheingans, P.2
  • 18
    • 24944555816 scopus 로고    scopus 로고
    • Visualization of uncertainty using the HSI color model: Computations with colors
    • T. Hengl. Visualization of uncertainty using the HSI color model: computations with colors. Proc. GeoComputation, 23:8-17, 2003.
    • (2003) Proc. GeoComputation , vol.23 , pp. 8-17
    • Hengl, T.1
  • 19
    • 84942484786 scopus 로고
    • Ridge regression: Biased estimation for nonorthogonal problems
    • A. E. Hoerl and R. W. Kennard. Ridge regression: Biased estimation for nonorthogonal problems. Technometrics, 12:55-67, 1970.
    • (1970) Technometrics , vol.12 , pp. 55-67
    • Hoerl, A.E.1    Kennard, R.W.2
  • 23
  • 25
    • 84950945692 scopus 로고
    • Model selection and accounting for model uncertainty in graphical models using occam's window
    • D. Madigan and A. E. Raftery. Model Selection and Accounting for Model Uncertainty in Graphical Models Using Occam's Window. J. of the American Statistical Assoc., 89(428):1535-1546, 1994.
    • (1994) J. of the American Statistical Assoc. , vol.89 , Issue.428 , pp. 1535-1546
    • Madigan, D.1    Raftery, A.E.2
  • 26
    • 77954416510 scopus 로고    scopus 로고
    • Maximum likelihood Bayesian averaging of airflow models in unsaturated fractured tuff using Occam and variance windows
    • E. Morales-Casique, S. P. Neuman, and V. V. Vesselinov. Maximum likelihood Bayesian averaging of airflow models in unsaturated fractured tuff using Occam and variance windows. Stochastic Environmental Research and Risk Assessment, 24:863-880, 2010.
    • (2010) Stochastic Environmental Research and Risk Assessment , vol.24 , pp. 863-880
    • Morales-Casique, E.1    Neuman, S.P.2    Vesselinov, V.V.3
  • 28
    • 13844262820 scopus 로고    scopus 로고
    • On visualizing uncertainty in volumetric data: Techniques and their evaluation
    • DOI 10.1016/j.jvlc.2003.09.001, PII S1045926X04000035
    • T. S. Newman andW. Lee. On visualizing uncertainty in volumetric data: techniques and their evaluation. J. of Visual Languages and Computing, 15(6):463-491, 2004. (Pubitemid 40256611)
    • (2004) Journal of Visual Languages and Computing , vol.15 , Issue.6 , pp. 463-491
    • Newman, T.S.1    Lee, W.2
  • 33
    • 0031340632 scopus 로고    scopus 로고
    • Approaches to uncertainty visualization
    • A. Pang, C. M. Wittenbrink, and S. K. Lodha. Approaches to uncertainty visualization. The Visual Computer, 13(8):370-390, 1997. (Pubitemid 127583168)
    • (1997) Visual Computer , vol.13 , Issue.8 , pp. 370-390
    • Pang, A.T.1    Wittenbrink, C.M.2    Lodha, S.K.3
  • 34
    • 0036811652 scopus 로고    scopus 로고
    • The nature of uncertainty in historical geographic information
    • B. Plewe. The nature of uncertainty in historical geographic information. Transactions in GIS, 6(4):431-456, 2002. (Pubitemid 35369156)
    • (2002) Transactions in GIS , vol.6 , Issue.4 , pp. 431-456
    • Plewe, B.1
  • 37
    • 0001201909 scopus 로고
    • Bayesian model selection in social research
    • A. Raftery. Bayesian Model Selection in Social Research. Sociological Methodology, 25:111-163, 1995.
    • (1995) Sociological Methodology , vol.25 , pp. 111-163
    • Raftery, A.1
  • 38
    • 20444497873 scopus 로고    scopus 로고
    • Using Bayesian model averaging to calibrate forecast ensembles
    • DOI 10.1175/MWR2906.1
    • A. Raftery, T. Gneiting, F. Balabdaoui, and M. Polakowski. Using bayesian model averaging to calibrate forecast ensembles. Monthly Weather Review, 133:1155-1174, 2005. (Pubitemid 40829946)
    • (2005) Monthly Weather Review , vol.133 , Issue.5 , pp. 1155-1174
    • Raftery, A.E.1    Gneiting, T.2    Balabdaoui, F.3    Polakowski, M.4
  • 40
    • 76749154579 scopus 로고    scopus 로고
    • Assessment of conceptual model uncertainty for the regional aquifer Pampa del Tamarugal - North Chile
    • R. Rojas, O. Batelaan, L. Feyen, and A. Dassargues. Assessment of conceptual model uncertainty for the regional aquifer Pampa del Tamarugal - North Chile. Hydrology and Earth System Sciences, 14(2):171-192, 2010.
    • (2010) Hydrology and Earth System Sciences , vol.14 , Issue.2 , pp. 171-192
    • Rojas, R.1    Batelaan, O.2    Feyen, L.3    Dassargues, A.4
  • 41
    • 75149176174 scopus 로고    scopus 로고
    • Ensemble-based classifiers
    • L. Rokach. Ensemble-based classifiers. Artificial Intelligence Review, 33(1-2):1-39, 2010.
    • (2010) Artificial Intelligence Review , vol.33 , Issue.1-2 , pp. 1-39
    • Rokach, L.1
  • 45
    • 0040007375 scopus 로고    scopus 로고
    • Bayesian model averaging in proportional hazard models: Assessing the risk of a stroke
    • C. T. Volinsky, D. Madigan, A. E. Raftery, and R. A. Kronmal. Bayesian model averaging in proportional hazard models: Assessing the risk of a stroke. Applied Statistics, 46:433-448, 1997.
    • (1997) Applied Statistics , vol.46 , pp. 433-448
    • Volinsky, C.T.1    Madigan, D.2    Raftery, A.E.3    Kronmal, R.A.4
  • 46
    • 7944234266 scopus 로고    scopus 로고
    • Comparison of Bayesian model averaging and stepwise methods for model selection in logistic regression
    • DOI 10.1002/sim.1930
    • D. Wang, W. Zhang, and A. Bakhai. Comparison of Bayesian model averaging and stepwise methods for model selection in logistic regression. Statistics in Medicine, 23(22):3451-3467, 2004. (Pubitemid 39467863)
    • (2004) Statistics in Medicine , vol.23 , Issue.22 , pp. 3451-3467
    • Wang, D.1    Zhang, W.2    Bakhai, A.3
  • 48
    • 2942700220 scopus 로고    scopus 로고
    • Maximum likelihood Bayesian averaging of spatial variability models in unsaturated fractured tuff
    • M. Ye, S. P. Neuman, and P. D. Meyer. Maximum likelihood Bayesian averaging of spatial variability models in unsaturated fractured tuff. Water Resources Research, 40(5):n. pag., 2004.
    • (2004) Water Resources Research , vol.40 , Issue.5
    • Ye, M.1    Neuman, S.P.2    Meyer, P.D.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.