메뉴 건너뛰기




Volumn 4213 LNAI, Issue , 2006, Pages 478-486

When efficient model averaging out-performs boosting and bagging

Author keywords

[No Author keywords available]

Indexed keywords

APPROXIMATION THEORY; DATA MINING; LEARNING SYSTEMS; MATHEMATICAL MODELS; PROBLEM SOLVING; STATISTICAL METHODS;

EID: 33750321908     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/11871637_46     Document Type: Conference Paper
Times cited : (20)

References (17)
  • 2
    • 84941149340 scopus 로고    scopus 로고
    • An ensemble technique for stable learners with performance bounds
    • Davidson I. (2004). An Ensemble Technique for Stable Learners with Performance Bounds, AAAI 2004.
    • (2004) AAAI 2004
    • Davidson, I.1
  • 3
    • 0034250160 scopus 로고    scopus 로고
    • An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting, and randomization
    • Dietterich, T. G. (2000). An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting, and randomization. Machine Learning, 40 (2).
    • (2000) Machine Learning , vol.40 , Issue.2
    • Dietterich, T.G.1
  • 4
    • 85172419807 scopus 로고    scopus 로고
    • Why does bagging work? A Bayesian account and its implications
    • Domingos, P., (1997). Why Does Bagging Work? A Bayesian Account and its Implications. KDD 1997.
    • (1997) KDD 1997
    • Domingos, P.1
  • 5
    • 84941154297 scopus 로고    scopus 로고
    • Bayesian averaging of classifiers and the overfitting problem
    • Domingos P. (2000). Bayesian Averaging of Classifiers and the Overfitting Problem, AAAI 2000
    • (2000) AAAI 2000
    • Domingos, P.1
  • 6
    • 0003242435 scopus 로고
    • The jackknife, the bootstrap, and other resampling plans
    • Efron, B. (1982). The jackknife, the bootstrap, and other resampling plans. SIAM Monograph 38.
    • (1982) SIAM Monograph , vol.38
    • Efron, B.1
  • 7
    • 33845519968 scopus 로고    scopus 로고
    • An improved categorization of classifier's sensitivity on sample selection bias
    • Fan W., Davidson I., Zadrozny B. and Yu P., (2005) An Improved Categorization of Classifier's Sensitivity on Sample Selection Bias, ICDM 2005.
    • (2005) ICDM 2005
    • Fan, W.1    Davidson, I.2    Zadrozny, B.3    Yu, P.4
  • 8
    • 33750313729 scopus 로고    scopus 로고
    • Is random model better? On its accuracy and Efficiency
    • Fan W., Wang H., Yu P.S, Ma S., (2003). Is random model better? On its accuracy and Efficiency, ICDM 2003.
    • (2003) ICDM 2003
    • Fan, W.1    Wang, H.2    Yu, P.S.3    Ma, S.4
  • 9
    • 84941153921 scopus 로고    scopus 로고
    • Maximizing tree diversity by building complete-random decision trees
    • Fei Tony Liu, Kai Ming Ting, Wei Fan, (2005). Maximizing Tree Diversity by Building Complete-Random Decision Trees. PAKDD 2005.
    • (2005) PAKDD 2005
    • Fei Tony Liu1    Kai Ming Ting2    Fan, W.3
  • 10
    • 33750291520 scopus 로고    scopus 로고
    • Personal Communication
    • Frank, Eibe, Personal Communication, 2004.
    • (2004)
    • Frank, E.1
  • 12
    • 0002872346 scopus 로고    scopus 로고
    • Bias plus variance decomposition for 0-1 loss functions
    • Kohavi R., Wolpert D., (1996). Bias Plus Variance Decomposition for 0-1 Loss Functions, ICML 1996.
    • (1996) ICML 1996
    • Kohavi, R.1    Wolpert, D.2
  • 15
    • 84941161849 scopus 로고    scopus 로고
    • Bayesian model averaging is not model combination
    • 7/6/00
    • Minka, T.P., Bayesian model averaging is not model combination, MIT Media Lab note (7/6/00), http://research.microsoft.com/~minka/papers/bma.html
    • MIT Media Lab Note
    • Minka, T.P.1
  • 16
    • 33749538850 scopus 로고    scopus 로고
    • Technical Report, Dept C.S., MIT
    • Rennie, J. (2003) 20 Newsgroups. Technical Report, Dept C.S., MIT.
    • (2003) 20 Newsgroups
    • Rennie, J.1
  • 17
    • 14344263218 scopus 로고    scopus 로고
    • Learning and evaluating classifiers under sample selection bias
    • Zadrozny B., (2004). Learning and evaluating classifiers under sample selection bias, ICML 2004.
    • (2004) ICML 2004
    • Zadrozny, B.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.