-
4
-
-
58749113262
-
Stepwise model fitting and statistical inference: Turning noise into signal pollution
-
10.1086/593303. 19049440
-
Stepwise model fitting and statistical inference: turning noise into signal pollution. R Mundry CL Nunn, Am Nat 2009 173 119 123 10.1086/593303 19049440
-
(2009)
Am Nat
, vol.173
, pp. 119-123
-
-
Mundry, R.1
Nunn, C.L.2
-
5
-
-
0024503860
-
Modeling and Variable Selection in Epidemiologic Analysis
-
10.2105/AJPH.79.3.340. 2916724
-
Modeling and Variable Selection in Epidemiologic Analysis. S Greenland, American Journal of Public Health 1989 79 340 349 10.2105/AJPH.79.3.340 2916724
-
(1989)
American Journal of Public Health
, vol.79
, pp. 340-349
-
-
Greenland, S.1
-
6
-
-
34548240680
-
On the inappropriateness of stepwise regression analysis for model building and testing
-
author reply 265-6. 10.1007/s00421-007-0485-9. 17520270
-
On the inappropriateness of stepwise regression analysis for model building and testing. MH Malek DE Berger JW Coburn, Eur J Appl Physiol 2007 101 2 263 4 author reply 265-6 10.1007/s00421-007-0485-9 17520270
-
(2007)
Eur J Appl Physiol
, vol.101
, Issue.2
, pp. 263-4
-
-
Malek, M.H.1
Berger, D.E.2
Coburn, J.W.3
-
7
-
-
58149277080
-
Independent predictors from stepwise logistic regression may be nothing more than publishable P values
-
10.1213/ane.0b013e31818c1297. 19020117
-
Independent predictors from stepwise logistic regression may be nothing more than publishable P values. NL Pace, Anesth Analg 2008 107 6 1775 1778 10.1213/ane.0b013e31818c1297 19020117
-
(2008)
Anesth Analg
, vol.107
, Issue.6
, pp. 1775-1778
-
-
Pace, N.L.1
-
8
-
-
7944234266
-
Comparison of Bayesian model averaging and stepwise methods for model selection in logistic regression
-
10.1002/sim.1930. 15505893
-
Comparison of Bayesian model averaging and stepwise methods for model selection in logistic regression. D Wang W Zhang A Bakhai, Statistics in Medicine 2004 23 3451 3467 10.1002/sim.1930 15505893
-
(2004)
Statistics in Medicine
, vol.23
, pp. 3451-3467
-
-
Wang, D.1
Zhang, W.2
Bakhai, A.3
-
11
-
-
1842607847
-
-
R Development Core Team R Foundation for Statistical Computing, Vienna, Austria. [ISBN 3-900051-07-0]
-
R Development Core Team, R: A Language and Environment for Statistical Computing R Foundation for Statistical Computing, Vienna, Austria 2010 http://www.R-project.org [ISBN 3-900051-07-0]
-
(2010)
R: A Language and Environment for Statistical Computing
-
-
-
12
-
-
34848852254
-
A Stepwise AIC Method for Variable Selection in Linear Regression
-
A Stepwise AIC Method for Variable Selection in Linear Regression. T Yamashita K Yamashita R Kamimura, Communications in Statistics: Theory & Methods 2007 36 13 2395 2403 http://search.ebscohost.com/login.aspx?direct= true&db=buh&AN=26774447&site=ehost-live
-
(2007)
Communications in Statistics: Theory & Methods
, vol.36
, Issue.13
, pp. 2395-2403
-
-
Yamashita, T.1
Yamashita, K.2
Kamimura, R.3
-
13
-
-
0001201909
-
Bayesian model selection in social research
-
10.2307/271063
-
Bayesian model selection in social research. AE Raftery, Sociological Methodology 1995 25 111 163 10.2307/271063
-
(1995)
Sociological Methodology
, vol.25
, pp. 111-163
-
-
Raftery, A.E.1
-
14
-
-
63549112304
-
BMA: An R package for Bayesian Model Averaging
-
http://CRAN.R-project.org/doc/Rnews/
-
BMA: An R package for Bayesian Model Averaging. AE Raftery IS Painter CT Volinsky, R News 2005 5 2 2 8 http://CRAN.R-project.org/doc/Rnews/
-
(2005)
R News
, vol.5
, Issue.2
, pp. 2-8
-
-
Raftery, A.E.1
Painter, I.S.2
Volinsky, C.T.3
-
15
-
-
0035889492
-
Variable selection and Bayesian model averaging in case-control studies
-
10.1002/sim.976. 11746314
-
Variable selection and Bayesian model averaging in case-control studies. V Viallefont AE Raftery S Richardson, Statistics in Medicine 2001 20 21 3215 3230 10.1002/sim.976 11746314
-
(2001)
Statistics in Medicine
, vol.20
, Issue.21
, pp. 3215-3230
-
-
Viallefont, V.1
Raftery, A.E.2
Richardson, S.3
-
16
-
-
27944460480
-
Can the strengths of AIC and BIC be shared? A conflict between model indentification and regression estimation
-
DOI 10.1093/biomet/92.4.937
-
Can the strengths of AIC and BIC be shared? A conflict between model indentification and regression estimation. Y Yang, Biometrika 2005 92 4 937 950 http://biomet.oxfordjournals.org/cgi/content/abstract/92/4/937 10.1093/biomet/92.4.937 (Pubitemid 41681244)
-
(2005)
Biometrika
, vol.92
, Issue.4
, pp. 937-950
-
-
Yang, Y.1
-
17
-
-
84950945692
-
Model Selection and Accounting for Model Uncertainity in Graphical Models Using Occam's Window
-
[Pdf]. 10.2307/2291017
-
Model Selection and Accounting for Model Uncertainity in Graphical Models Using Occam's Window. D Madigan AE Raftery, Journal of the American Statistical Association 1994 89 1535 1546 [Pdf] 10.2307/2291017
-
(1994)
Journal of the American Statistical Association
, vol.89
, pp. 1535-1546
-
-
Madigan, D.1
Raftery, A.E.2
|