메뉴 건너뛰기




Volumn 35, Issue 3, 2013, Pages 335-357

Identification of sparse neural functional connectivity using penalized likelihood estimation and basis functions

Author keywords

Basis function; Functional connectivity; Generalized linear model; Penalized likelihood; Sparsity; Spike trains; Temporal coding

Indexed keywords

ESTIMATION; INTERPOLATION; MAXIMUM LIKELIHOOD ESTIMATION;

EID: 84886600772     PISSN: 09295313     EISSN: 15736873     Source Type: Journal    
DOI: 10.1007/s10827-013-0455-7     Document Type: Article
Times cited : (67)

References (67)
  • 1
    • 0024599599 scopus 로고
    • Dynamics of neuronal firing correlation - Modulation of effective connectivity
    • 2723733 1:STN:280:DyaL1M3lslGhug%3D%3D
    • Aertsen, A. M. H. J.; Gerstein, G. L.; Habib, M. K.; & Palm, G. (1989). Dynamics of neuronal firing correlation - modulation of effective connectivity. Journal of Neurophysiology, 61(5), 900-917.
    • (1989) Journal of Neurophysiology , vol.61 , Issue.5 , pp. 900-917
    • Aertsen, A.1    Gerstein, G.L.2    Habib, M.K.3    Palm, G.4
  • 3
    • 77949365161 scopus 로고    scopus 로고
    • The neurobiological basis of cognition: Identification by multi-input, multioutput nonlinear dynamic modeling
    • 20700470 10.1109/JPROC.2009.2038804 1:CAS:528:DC%2BC3cXltVajt7c%3D
    • Berger, T. W.; Song, D.; Chan, R. H. M.; & Marmarelis, V. Z. (2010). The neurobiological basis of cognition: identification by multi-input, multioutput nonlinear dynamic modeling. Proceedings of the IEEE, 98(3), 356-374.
    • (2010) Proceedings of the IEEE , vol.98 , Issue.3 , pp. 356-374
    • Berger, T.W.1    Song, D.2    Chan, R.H.M.3    Marmarelis, V.Z.4
  • 6
    • 0036482863 scopus 로고    scopus 로고
    • The time-rescaling theorem and its application to neural spike train data analysis
    • 11802915 10.1162/08997660252741149
    • Brown, E. N.; Barbieri, R.; Ventura, V.; Kass, R. E.; & Frank, L. M. (2002). The time-rescaling theorem and its application to neural spike train data analysis. Neural Computation, 14(2), 325-346.
    • (2002) Neural Computation , vol.14 , Issue.2 , pp. 325-346
    • Brown, E.N.1    Barbieri, R.2    Ventura, V.3    Kass, R.E.4    Frank, L.M.5
  • 7
    • 2142765521 scopus 로고    scopus 로고
    • Multiple neural spike train data analysis: State-of-the-art and future challenges
    • 15114358 10.1038/nn1228 1:CAS:528:DC%2BD2cXjsFKltrg%3D
    • Brown, E. N.; Kass, R. E.; & Mitra, P. P. (2004). Multiple neural spike train data analysis: state-of-the-art and future challenges. Nature Neuroscience, 7(5), 456-461.
    • (2004) Nature Neuroscience , vol.7 , Issue.5 , pp. 456-461
    • Brown, E.N.1    Kass, R.E.2    Mitra, P.P.3
  • 8
    • 79954548587 scopus 로고    scopus 로고
    • Statistical inference for assessing functional connectivity of neuronal ensembles with sparse spiking data. [Article]
    • 20937583 10.1109/TNSRE.2010.2086079
    • Chen, Z.; Putrino, D. F.; Ghosh, S.; Barbieri, R.; & Brown, E. N. (2011). Statistical inference for assessing functional connectivity of neuronal ensembles with sparse spiking data. [Article]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 19(2), 121-135.
    • (2011) IEEE Transactions on Neural Systems and Rehabilitation Engineering , vol.19 , Issue.2 , pp. 121-135
    • Chen, Z.1    Putrino, D.F.2    Ghosh, S.3    Barbieri, R.4    Brown, E.N.5
  • 9
    • 0002316349 scopus 로고
    • On calculating with B-splines
    • 10.1016/0021-9045(72)90080-9
    • de Boor, C. (1972). On calculating with B-splines. Journal of Approximation Theory, 6, 50-62.
    • (1972) Journal of Approximation Theory , vol.6 , pp. 50-62
    • De Boor, C.1
  • 10
    • 0030031686 scopus 로고    scopus 로고
    • Hippocampal ensemble activity during spatial delayed-nonmatch-to-sample performance in rats
    • 8613802 1:CAS:528:DyaK28Xht1WjtQ%3D%3D
    • Deadwyler, S. A.; Bunn, T.; & Hampson, R. E. (1996). Hippocampal ensemble activity during spatial delayed-nonmatch-to-sample performance in rats. Journal of Neuroscience, 16(1), 354-372.
    • (1996) Journal of Neuroscience , vol.16 , Issue.1 , pp. 354-372
    • Deadwyler, S.A.1    Bunn, T.2    Hampson, R.E.3
  • 11
    • 25444532788 scopus 로고    scopus 로고
    • Flexible smoothing with B-splines and penalties
    • 10.1214/ss/1038425655
    • Eilers, P. H. C.; & Marx, B. D. (1996). Flexible smoothing with B-splines and penalties. Statistical Science, 11(2), 89-102.
    • (1996) Statistical Science , vol.11 , Issue.2 , pp. 89-102
    • Eilers, P.H.C.1    Marx, B.D.2
  • 12
    • 65249090828 scopus 로고    scopus 로고
    • Identifying functional connectivity in large-scale neural ensemble recordings: A multiscale data mining approach
    • 19431266 10.1162/neco.2008.09-07-606
    • Eldawlatly, S.; Jin, R.; & Oweiss, K. G. (2009). Identifying functional connectivity in large-scale neural ensemble recordings: a multiscale data mining approach. Neural Computation, 21(2), 450-477.
    • (2009) Neural Computation , vol.21 , Issue.2 , pp. 450-477
    • Eldawlatly, S.1    Jin, R.2    Oweiss, K.G.3
  • 13
    • 84952149204 scopus 로고
    • A statistical view of some chemometrics regression tools
    • 10.1080/00401706.1993.10485033
    • Frank, I. E.; & Friedman, J. H. (1993). A statistical view of some chemometrics regression tools. Technometrics, 35(2), 109-135.
    • (1993) Technometrics , vol.35 , Issue.2 , pp. 109-135
    • Frank, I.E.1    Friedman, J.H.2
  • 14
    • 0032361278 scopus 로고    scopus 로고
    • Penalized regression: The bridge versus the lasso
    • Fu, W. J. (1998). Penalized regression: the bridge versus the lasso. Journal of Computational and Graphical Statistics, 7(3), 397-416.
    • (1998) Journal of Computational and Graphical Statistics , vol.7 , Issue.3 , pp. 397-416
    • Fu, W.J.1
  • 15
    • 68349131554 scopus 로고    scopus 로고
    • Evaluation of the Performance of Information Theory-Based Methods and Cross-Correlation to Estimate the Functional Connectivity in Cortical Networks
    • Garofalo, M.; Nieus, T.; Massobrio, P.; & Martinoia, S. (2009). Evaluation of the Performance of Information Theory-Based Methods and Cross-Correlation to Estimate the Functional Connectivity in Cortical Networks. Plos One, 4(8).
    • (2009) Plos One , vol.4 , Issue.8
    • Garofalo, M.1    Nieus, T.2    Massobrio, P.3    Martinoia, S.4
  • 16
  • 18
    • 33947110329 scopus 로고    scopus 로고
    • Evaluating information transfer between auditory cortical neurons
    • 17202243 10.1152/jn.01106.2006
    • Gourevitch, B.; & Eggermont, J. J. (2007). Evaluating information transfer between auditory cortical neurons. Journal of Neurophysiology, 97(3), 2533-2543.
    • (2007) Journal of Neurophysiology , vol.97 , Issue.3 , pp. 2533-2543
    • Gourevitch, B.1    Eggermont, J.J.2
  • 19
    • 0033540086 scopus 로고    scopus 로고
    • Distribution of spatial and nonspatial information in dorsal hippocampus
    • 10.1038/45154 10604466 10.1038/45154 1:CAS:528:DC%2BD3cXjsVGk
    • Hampson, R. E.; Simeral, J. D.; & Deadwyler, S. A. (1999). Distribution of spatial and nonspatial information in dorsal hippocampus. Nature, 402(6762), 610-614. doi: 10.1038/45154.
    • (1999) Nature , vol.402 , Issue.6762 , pp. 610-614
    • Hampson, R.E.1    Simeral, J.D.2    Deadwyler, S.A.3
  • 20
    • 0043069766 scopus 로고    scopus 로고
    • Organization of cell assemblies in the hippocampus
    • 10.1038/Nature01834 12891358 10.1038/nature01834 1:CAS:528: DC%2BD3sXlvVGisL4%3D
    • Harris, K. D.; Csicsvari, J.; Hirase, H.; Dragoi, G.; & Buzsaki, G. (2003). Organization of cell assemblies in the hippocampus. Nature, 424(6948), 552-556. doi: 10.1038/Nature01834.
    • (2003) Nature , vol.424 , Issue.6948 , pp. 552-556
    • Harris, K.D.1    Csicsvari, J.2    Hirase, H.3    Dragoi, G.4    Buzsaki, G.5
  • 21
    • 78149322645 scopus 로고    scopus 로고
    • Discrete time rescaling theorem: Determining goodness of fit for discrete time statistical models of neural spiking
    • 20608868 10.1162/NECO-a-00015
    • Haslinger, R.; Pipa, G.; & Brown, E. (2010). Discrete time rescaling theorem: determining goodness of fit for discrete time statistical models of neural spiking. Neural Computation, 22(10), 2477-2506.
    • (2010) Neural Computation , vol.22 , Issue.10 , pp. 2477-2506
    • Haslinger, R.1    Pipa, G.2    Brown, E.3
  • 23
    • 0034180688 scopus 로고    scopus 로고
    • Expanding NEURON's repertoire of mechanisms with NMODL
    • 10905805 10.1162/089976600300015475 1:STN:280:DC%2BD3czpt1yhsg%3D%3D
    • Hines, M. L.; & Carnevale, N. T. (2000). Expanding NEURON's repertoire of mechanisms with NMODL. Neural Computation, 12(5), 995-1007.
    • (2000) Neural Computation , vol.12 , Issue.5 , pp. 995-1007
    • Hines, M.L.1    Carnevale, N.T.2
  • 24
    • 66249102619 scopus 로고    scopus 로고
    • A group bridge approach for variable selection
    • 10.1093/biomet/asp040
    • Huang, J.; Ma, S.; Xie, H.; & Zhang, C.-H. (2009). A group bridge approach for variable selection. Biometrika, 96(4), 1024.
    • (2009) Biometrika , vol.96 , Issue.4 , pp. 1024
    • Huang, J.1    Ma, S.2    Xie, H.3    Zhang, C.-H.4
  • 25
    • 81055144854 scopus 로고    scopus 로고
    • Extending Transfer Entropy Improves Identification of Effective Connectivity in a Spiking Cortical Network Model
    • Ito, S.; Hansen, M. E.; Heiland, R.; Lumsdaine, A.; Litke, A. M.; & Beggs, J. M. (2011). Extending Transfer Entropy Improves Identification of Effective Connectivity in a Spiking Cortical Network Model. Plos One, 6(11).
    • (2011) Plos One , vol.6 , Issue.11
    • Ito, S.1    Hansen, M.E.2    Heiland, R.3    Lumsdaine, A.4    Litke, A.M.5    Beggs, J.M.6
  • 27
    • 0035432526 scopus 로고    scopus 로고
    • A spike-train probability model
    • 11506667 10.1162/08997660152469314 1:STN:280:DC%2BD3MvmtVGjtw%3D%3D
    • Kass, R. E.; & Ventura, V. (2001). A spike-train probability model. Neural Computation, 13(8), 1713-1720.
    • (2001) Neural Computation , vol.13 , Issue.8 , pp. 1713-1720
    • Kass, R.E.1    Ventura, V.2
  • 29
    • 79953672492 scopus 로고    scopus 로고
    • A Granger Causality Measure for Point Process Models of Ensemble Neural Spiking Activity
    • Kim, S.; Putrino, D.; Ghosh, S.; & Brown, E. N. (2011). A Granger Causality Measure for Point Process Models of Ensemble Neural Spiking Activity. Plos Computational Biology, 7(3).
    • (2011) Plos Computational Biology , vol.7 , Issue.3
    • Kim, S.1    Putrino, D.2    Ghosh, S.3    Brown, E.N.4
  • 31
    • 84857049266 scopus 로고    scopus 로고
    • High-performance and scalable system architecture for the real-time estimation of generalized laguerre-volterra MIMO model from neural population spiking activity
    • 10.1109/JETCAS.2011.2178733
    • Li, W. X. Y.; Chan, R. H. M.; Zhang, W.; Cheung, R. C. C.; Song, D.; & Berger, T. W. (2011). High-performance and scalable system architecture for the real-time estimation of generalized laguerre-volterra MIMO model from neural population spiking activity. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 1(4), 489-501.
    • (2011) IEEE Journal on Emerging and Selected Topics in Circuits and Systems , vol.1 , Issue.4 , pp. 489-501
    • Li, W.X.Y.1    Chan, R.H.M.2    Zhang, W.3    Cheung, R.C.C.4    Song, D.5    Berger, T.W.6
  • 33
    • 0027688143 scopus 로고
    • Identification of nonlinear biological systems using Laguerre expansions of kernels
    • 8116911 10.1007/BF02368639 1:STN:280:DyaK2c7mtFehsQ%3D%3D
    • Marmarelis, V. Z. (1993). Identification of nonlinear biological systems using Laguerre expansions of kernels. Annals of Biomedical Engineering, 21(6), 573-589.
    • (1993) Annals of Biomedical Engineering , vol.21 , Issue.6 , pp. 573-589
    • Marmarelis, V.Z.1
  • 36
    • 68349139409 scopus 로고    scopus 로고
    • Analyzing multiple spike trains with nonparametric granger causality
    • 19137420 10.1007/s10827-008-0126-2
    • Nedungadi, A. G.; Rangarajan, G.; Jain, N.; & Ding, M. Z. (2009). Analyzing multiple spike trains with nonparametric granger causality. Journal of Computational Neuroscience, 27(1), 55-64.
    • (2009) Journal of Computational Neuroscience , vol.27 , Issue.1 , pp. 55-64
    • Nedungadi, A.G.1    Rangarajan, G.2    Jain, N.3    Ding, M.Z.4
  • 37
    • 84918385534 scopus 로고
    • Orthogonal functionals of the Poisson process
    • 10.1109/TIT.1972.1054856
    • Ogura, H. (1972). Orthogonal functionals of the Poisson process. IEEE Transactions on Information Theory, 18(4), 473-481.
    • (1972) IEEE Transactions on Information Theory , vol.18 , Issue.4 , pp. 473-481
    • Ogura, H.1
  • 38
    • 23044490853 scopus 로고    scopus 로고
    • Analyzing functional connectivity using a network likelihood model of ensemble neural spiking activity
    • 15992486 10.1162/0899766054322973
    • Okatan, M.; Wilson, M. A.; & Brown, E. N. (2005). Analyzing functional connectivity using a network likelihood model of ensemble neural spiking activity. Neural Computation, 17(9), 1927-1961.
    • (2005) Neural Computation , vol.17 , Issue.9 , pp. 1927-1961
    • Okatan, M.1    Wilson, M.A.2    Brown, E.N.3
  • 39
    • 0041877169 scopus 로고    scopus 로고
    • Estimation of entropy and mutual information
    • 10.1162/089976603321780272
    • Paninski, L. (2003). Estimation of entropy and mutual information. Neural Computation, 15(6), 1191-1253.
    • (2003) Neural Computation , vol.15 , Issue.6 , pp. 1191-1253
    • Paninski, L.1
  • 40
    • 9744239998 scopus 로고    scopus 로고
    • Maximum likelihood estimation of a stochastic integrate-and-fire neural encoding model
    • 15516273 10.1162/0899766042321797
    • Paninski, L.; Pillow, J. W.; & Simoncelli, E. P. (2004). Maximum likelihood estimation of a stochastic integrate-and-fire neural encoding model. Neural Computation, 16(12), 2533-2561.
    • (2004) Neural Computation , vol.16 , Issue.12 , pp. 2533-2561
    • Paninski, L.1    Pillow, J.W.2    Simoncelli, E.P.3
  • 41
    • 80055065461 scopus 로고    scopus 로고
    • Receptive Field Inference with Localized Priors
    • Park, M.; & Pillow, J. W. (2011). Receptive Field Inference with Localized Priors. Plos Computational Biology, 7(10).
    • (2011) Plos Computational Biology , vol.7 , Issue.10
    • Park, M.1    Pillow, J.W.2
  • 42
    • 28044458279 scopus 로고    scopus 로고
    • Prediction and decoding of retinal ganglion cell responses with a probabilistic spiking model
    • 16306413 10.1523/JNEUROSCI.3305-05.2005 1:CAS:528:DC%2BD2MXht1yks7zO
    • Pillow, J. W.; Paninski, L.; Uzzell, V. J.; Simoncelli, E. P.; & Chichilnisky, E. J. (2005). Prediction and decoding of retinal ganglion cell responses with a probabilistic spiking model. Journal of Neuroscience, 25, 11003-11013.
    • (2005) Journal of Neuroscience , vol.25 , pp. 11003-11013
    • Pillow, J.W.1    Paninski, L.2    Uzzell, V.J.3    Simoncelli, E.P.4    Chichilnisky, E.J.5
  • 43
    • 50049100348 scopus 로고    scopus 로고
    • Spatio-temporal correlations and visual signalling in a complete neuronal population
    • 18650810 10.1038/nature07140 1:CAS:528:DC%2BD1cXhtVWnsrbK
    • Pillow, J. W.; Shlens, J.; Paninski, L.; Sher, A.; Litke, A. M.; Chichilnisky, E. J.; et al. (2008). Spatio-temporal correlations and visual signalling in a complete neuronal population. Nature, 454(7207), 995-999.
    • (2008) Nature , vol.454 , Issue.7207 , pp. 995-999
    • Pillow, J.W.1    Shlens, J.2    Paninski, L.3    Sher, A.4    Litke, A.M.5    Chichilnisky, E.J.6
  • 44
    • 79952280379 scopus 로고    scopus 로고
    • Estimating the directed information to infer causal relationships in ensemble neural spike train recordings
    • 20582566 10.1007/s10827-010-0247-2
    • Quinn, C. J.; Coleman, T. P.; Kiyavash, N.; & Hatsopoulos, N. G. (2011). Estimating the directed information to infer causal relationships in ensemble neural spike train recordings. Journal of Computational Neuroscience, 30(1), 17-44.
    • (2011) Journal of Computational Neuroscience , vol.30 , Issue.1 , pp. 17-44
    • Quinn, C.J.1    Coleman, T.P.2    Kiyavash, N.3    Hatsopoulos, N.G.4
  • 45
    • 77953812054 scopus 로고    scopus 로고
    • Statistical analysis of large-scale neuronal recording data
    • 20472395 10.1016/j.neunet.2010.04.005
    • Reed, J. L.; & Kaas, J. H. (2010). Statistical analysis of large-scale neuronal recording data. Neural Networks, 23(6), 673-684.
    • (2010) Neural Networks , vol.23 , Issue.6 , pp. 673-684
    • Reed, J.L.1    Kaas, J.H.2
  • 46
    • 38049108135 scopus 로고    scopus 로고
    • Fast optimization methods for L1 regularization: A comparative study and two new approaches
    • J.N. Kok J. Koronacki R.L. DeMantaras S. Matwin D. Mladenic A. Skowron (eds) Springer-Verlag Berlin Berlin
    • Schmidt, M.; Fung, G.; & Rosales, R. (2007). Fast optimization methods for L1 regularization: A comparative study and two new approaches. In J. N. Kok, J. Koronacki, R. L. DeMantaras, S. Matwin, D. Mladenic, & A. Skowron (Eds.), Machine learning: ECML 2007, proceedings (Vol. 4701, pp. 286-297, lecture notes in artificial intelligence). Berlin: Springer-Verlag Berlin.
    • (2007) Machine Learning: ECML 2007, Proceedings (Vol. 4701, Pp. 286-297, Lecture Notes in Artificial Intelligence)
    • Schmidt, M.1    Fung, G.2    Rosales, R.3
  • 47
    • 51949118201 scopus 로고    scopus 로고
    • Structure learning in random fields for heart motion abnormality detection
    • Ieee Proceedings-Ieee Computer Society Conference on Computer Vision and Pattern Recognition
    • Schmidt, M.; Murphy, K.; Fung, G.; Rosales, R.; & Ieee (2008). Structure learning in random fields for heart motion abnormality detection. In 2008 Ieee Conference on Computer Vision and Pattern Recognition, Vols 1-12 (pp. 203-210, Proceedings-Ieee Computer Society Conference on Computer Vision and Pattern Recognition).
    • (2008) 2008 Ieee Conference on Computer Vision and Pattern Recognition , vol.1-12 , pp. 203-210
    • Schmidt, M.1    Murphy, K.2    Fung, G.3    Rosales, R.4
  • 49
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • 10.1214/aos/1176344136
    • Schwarz, G. (1978). Estimating the dimension of a model. The Annals of Statistics, 6, 461-464.
    • (1978) The Annals of Statistics , vol.6 , pp. 461-464
    • Schwarz, G.1
  • 50
    • 84857863324 scopus 로고    scopus 로고
    • Assessing functional connectivity of neural ensembles using directed information
    • 22328616 10.1088/1741-2560/9/2/026004
    • So, K.; Koralek, A. C.; Ganguly, K.; Gastpar, M. C.; & Carmena, J. M. (2012). Assessing functional connectivity of neural ensembles using directed information. Journal of Neural Engineering, 9(2), 026004.
    • (2012) Journal of Neural Engineering , vol.9 , Issue.2 , pp. 026004
    • So, K.1    Koralek, A.C.2    Ganguly, K.3    Gastpar, M.C.4    Carmena, J.M.5
  • 51
    • 84859045637 scopus 로고    scopus 로고
    • Identification of nonlinear dynamics in neural population activity
    • K.G. Oweiss (eds) McGraw-Hill/Irwin Boston
    • Song, D.; & Berger, T. W. (2009). Identification of nonlinear dynamics in neural population activity. In K. G. Oweiss (Ed.), Statistical signal processing for neuroscience and neurotechnology. Boston: McGraw-Hill/Irwin.
    • (2009) Statistical Signal Processing for Neuroscience and Neurotechnology
    • Song, D.1    Berger, T.W.2
  • 53
    • 70350231432 scopus 로고    scopus 로고
    • Nonlinear modeling of neural population dynamics for hippocampal prostheses
    • 19501484 10.1016/j.neunet.2009.05.004
    • Song, D.; Chan, R. H.; Marmarelis, V. Z.; Hampson, R. E.; Deadwyler, S. A.; & Berger, T. W. (2009a). Nonlinear modeling of neural population dynamics for hippocampal prostheses. Neural Networks, 22(9), 1340-1351.
    • (2009) Neural Networks , vol.22 , Issue.9 , pp. 1340-1351
    • Song, D.1    Chan, R.H.2    Marmarelis, V.Z.3    Hampson, R.E.4    Deadwyler, S.A.5    Berger, T.W.6
  • 54
    • 60449102298 scopus 로고    scopus 로고
    • Parametric and non-parametric modeling of short-term synaptic plasticity. Part I: Computational study
    • 18506609 10.1007/s10827-008-0097-3
    • Song, D.; Marmarelis, V. Z.; & Berger, T. W. (2009b). Parametric and non-parametric modeling of short-term synaptic plasticity. Part I: computational study. Journal of Computational Neuroscience, 26(1), 1-19.
    • (2009) Journal of Computational Neuroscience , vol.26 , Issue.1 , pp. 1-19
    • Song, D.1    Marmarelis, V.Z.2    Berger, T.W.3
  • 55
    • 60449100890 scopus 로고    scopus 로고
    • Parametric and non-parametric modeling of short-term synaptic plasticity. Part II: Experimental study
    • 18504530 10.1007/s10827-008-0098-2
    • Song, D.; Wang, Z.; Marmarelis, V. Z.; & Berger, T. W. (2009c). Parametric and non-parametric modeling of short-term synaptic plasticity. Part II: experimental study. Journal of Computational Neuroscience, 26(1), 21-37.
    • (2009) Journal of Computational Neuroscience , vol.26 , Issue.1 , pp. 21-37
    • Song, D.1    Wang, Z.2    Marmarelis, V.Z.3    Berger, T.W.4
  • 57
    • 67349283504 scopus 로고    scopus 로고
    • Inferring functional connections between neurons
    • 19081241 10.1016/j.conb.2008.11.005 1:CAS:528:DC%2BD1MXmtVKks7k%3D
    • Stevenson, I. H.; Rebesco, J. M.; Miller, L. E.; & Kording, K. P. (2008). Inferring functional connections between neurons. Current Opinion in Neurobiology, 18(6), 582-588.
    • (2008) Current Opinion in Neurobiology , vol.18 , Issue.6 , pp. 582-588
    • Stevenson, I.H.1    Rebesco, J.M.2    Miller, L.E.3    Kording, K.P.4
  • 60
    • 33847636281 scopus 로고    scopus 로고
    • Nonparametric modeling of neural point processes via stochastic gradient boosting regression
    • 17298229 10.1162/neco.2007.19.3.672
    • Truccolo, W.; & Donoghue, J. P. (2007). Nonparametric modeling of neural point processes via stochastic gradient boosting regression. Neural Computation, 19(3), 672-705.
    • (2007) Neural Computation , vol.19 , Issue.3 , pp. 672-705
    • Truccolo, W.1    Donoghue, J.P.2
  • 61
    • 12544253489 scopus 로고    scopus 로고
    • A point process framework for relating neural spiking activity to spiking history, neural ensemble, and extrinsic covariate effects
    • 15356183 10.1152/jn.00697.2004
    • Truccolo, W.; Eden, U. T.; Fellows, M. R.; Donoghue, J. P.; & Brown, E. N. (2005). A point process framework for relating neural spiking activity to spiking history, neural ensemble, and extrinsic covariate effects. Journal of Neurophysiology, 93(2), 1074-1089.
    • (2005) Journal of Neurophysiology , vol.93 , Issue.2 , pp. 1074-1089
    • Truccolo, W.1    Eden, U.T.2    Fellows, M.R.3    Donoghue, J.P.4    Brown, E.N.5
  • 62
    • 84886597436 scopus 로고    scopus 로고
    • Functional model selection for sparse binary time series with multiple inputs
    • S.H. Holan W.R. Bell T.S. McElroy (eds) Chapman and Hall/CRC Boca Raton
    • Tu, C. Y.; Song, D.; Breidt, F. J.; Berger, T. W.; & Wang, H. (2012). Functional model selection for sparse binary time series with multiple inputs. In S. H. Holan, W. R. Bell, & T. S. McElroy (Eds.), Economic time series: Modeling and seasonality. Boca Raton: Chapman and Hall/CRC.
    • (2012) Economic Time Series: Modeling and Seasonality
    • Tu, C.Y.1    Song, D.2    Breidt, F.J.3    Berger, T.W.4    Wang, H.5
  • 63
    • 84863868057 scopus 로고    scopus 로고
    • Modeling the impact of common noise inputs on the network activity of retinal ganglion cells
    • 22203465 10.1007/s10827-011-0376-2
    • Vidne, M.; Ahmadian, Y.; Shlens, J.; Pillow, J. W.; Kulkarni, J.; Litke, A. M.; et al. (2012). Modeling the impact of common noise inputs on the network activity of retinal ganglion cells. Journal of Computational Neuroscience, 33(1), 97-121.
    • (2012) Journal of Computational Neuroscience , vol.33 , Issue.1 , pp. 97-121
    • Vidne, M.1    Ahmadian, Y.2    Shlens, J.3    Pillow, J.W.4    Kulkarni, J.5    Litke, A.M.6
  • 67
    • 0036201201 scopus 로고    scopus 로고
    • Short-term synaptic plasticity
    • 11826273 10.1146/annurev.physiol.64.092501.114547 1:CAS:528: DC%2BD38XisFGmsLk%3D
    • Zucker, R. S.; & Regehr, W. G. (2002). Short-term synaptic plasticity. Annual Review of Physiology, 64, 355-405.
    • (2002) Annual Review of Physiology , vol.64 , pp. 355-405
    • Zucker, R.S.1    Regehr, W.G.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.