메뉴 건너뛰기




Volumn 85, Issue , 2013, Pages 683-687

Evaluation of pretreatment methods for lignocellulosic ethanol production from energy cane variety L 79-1002

Author keywords

Alkaline pre treatment; Cellulose; Dilute acid hydrolysis; Energy cane; Ethanol; Fermentation; Hemicelluose; Lignin

Indexed keywords

CELLULOSE AND HEMICELLULOSE; DILUTE-ACID HYDROLYSIS; ENERGY CANE; HEMICELLUOSE; LIGNOCELLULOSIC BIOMASS; LIGNOCELLULOSIC ETHANOLS; PRE-TREATMENT; RECOMBINANT ESCHERICHIA COLI;

EID: 84886310509     PISSN: 09648305     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.ibiod.2013.03.021     Document Type: Article
Times cited : (17)

References (34)
  • 1
    • 47949108963 scopus 로고    scopus 로고
    • Pichia stipitis xylose reductase helps detoxifying lignocellulosic hydrolysate by reducing 5-hydroxymethyl-furfural (HMF)
    • Almeida J.R., Modig M.T., Röder A., Lidén G., Gorwa-Grauslund M. Pichia stipitis xylose reductase helps detoxifying lignocellulosic hydrolysate by reducing 5-hydroxymethyl-furfural (HMF). Biotechnology and Biofuels 2008, 1:1-12.
    • (2008) Biotechnology and Biofuels , vol.1 , pp. 1-12
    • Almeida, J.R.1    Modig, M.T.2    Röder, A.3    Lidén, G.4    Gorwa-Grauslund, M.5
  • 2
    • 71849120361 scopus 로고    scopus 로고
    • Anaerobic Biotransformation of furfural and furfuryl alcohol by a methanogenic Archaebacterium
    • Boopathy R. Anaerobic Biotransformation of furfural and furfuryl alcohol by a methanogenic Archaebacterium. International Journal of Biodeterioration & Biodegradation 2009, 63:1070-1072.
    • (2009) International Journal of Biodeterioration & Biodegradation , vol.63 , pp. 1070-1072
    • Boopathy, R.1
  • 3
  • 4
    • 84886313446 scopus 로고    scopus 로고
    • Development of energy canes for an expanding biofuels industry
    • Cobill R.M. Development of energy canes for an expanding biofuels industry. Sugar Journal 2007, 70:6.
    • (2007) Sugar Journal , vol.70 , pp. 6
    • Cobill, R.M.1
  • 5
    • 0017270314 scopus 로고
    • Properties of cellulose and lignocellulosic materials as substrates for enzymatic conversion processes
    • Cowling E.B., Kirk T.K. Properties of cellulose and lignocellulosic materials as substrates for enzymatic conversion processes. Biotechnology and Bioengineering Symposium 1976, 6:95-123.
    • (1976) Biotechnology and Bioengineering Symposium , vol.6 , pp. 95-123
    • Cowling, E.B.1    Kirk, T.K.2
  • 6
    • 0032211239 scopus 로고    scopus 로고
    • Fermentation of hexose and pentose sugars using a novel ethanologenic Escherichia coli strain
    • Dien B.S., Hespell R.B., Wyckoff H.A., Bothast R.J. Fermentation of hexose and pentose sugars using a novel ethanologenic Escherichia coli strain. Enzyme and Microbial Technology 1998, 23:336-371.
    • (1998) Enzyme and Microbial Technology , vol.23 , pp. 336-371
    • Dien, B.S.1    Hespell, R.B.2    Wyckoff, H.A.3    Bothast, R.J.4
  • 7
    • 0034040510 scopus 로고    scopus 로고
    • Development of new ethanologenic Esherichia coli strains fro fermentation of lignocellulosic biomass
    • Dien B.S., Nicholas N.N., O'Bryan P.J., Bothast R.J. Development of new ethanologenic Esherichia coli strains fro fermentation of lignocellulosic biomass. Applied Biochemistry and Biotechnology 2000, 84:181-186.
    • (2000) Applied Biochemistry and Biotechnology , vol.84 , pp. 181-186
    • Dien, B.S.1    Nicholas, N.N.2    O'Bryan, P.J.3    Bothast, R.J.4
  • 8
    • 33846663258 scopus 로고    scopus 로고
    • Use of post-harvest sugarcane residue for ethanol production
    • Dawson L., Boopathy R. Use of post-harvest sugarcane residue for ethanol production. Bioresource Technology 2007, 98:1695-1699.
    • (2007) Bioresource Technology , vol.98 , pp. 1695-1699
    • Dawson, L.1    Boopathy, R.2
  • 9
    • 64849094324 scopus 로고    scopus 로고
    • Cellulosic ethanol production from sugarcane bagasse without enzymatic saccharification
    • Dawson L., Boopathy R. Cellulosic ethanol production from sugarcane bagasse without enzymatic saccharification. BioResources 2008, 3:452-460.
    • (2008) BioResources , vol.3 , pp. 452-460
    • Dawson, L.1    Boopathy, R.2
  • 10
    • 0021360650 scopus 로고
    • Alkaline peroxide delignification of agricultural residues to enhance enzymatic saccharification
    • Gould J.M. Alkaline peroxide delignification of agricultural residues to enhance enzymatic saccharification. Biotechnology and Bioengineering 1984, 26:46-52.
    • (1984) Biotechnology and Bioengineering , vol.26 , pp. 46-52
    • Gould, J.M.1
  • 11
    • 0022027179 scopus 로고
    • Studies on the mechanism of alkaline peroxide delignification of agricultural residues
    • Gould J.M. Studies on the mechanism of alkaline peroxide delignification of agricultural residues. Biotechnology and Bioengineering 1985, 26:225-231.
    • (1985) Biotechnology and Bioengineering , vol.26 , pp. 225-231
    • Gould, J.M.1
  • 15
    • 0031832290 scopus 로고    scopus 로고
    • Genetically engineered Saccharomyces yeast capable of effective cofermentation of glucose and xylose
    • Ho N., Chen W.Y.Z., Brainard A.P. Genetically engineered Saccharomyces yeast capable of effective cofermentation of glucose and xylose. Applied and Environmental Microbiology 1998, 64:1852-1859.
    • (1998) Applied and Environmental Microbiology , vol.64 , pp. 1852-1859
    • Ho, N.1    Chen, W.Y.Z.2    Brainard, A.P.3
  • 16
    • 33744914986 scopus 로고    scopus 로고
    • Engineering yeasts for xylose metabolism
    • Jeffries T. Engineering yeasts for xylose metabolism. Biotechnology 2006, 17:320-326.
    • (2006) Biotechnology , vol.17 , pp. 320-326
    • Jeffries, T.1
  • 17
    • 0004945928 scopus 로고
    • Partial acid hydrolysis of poplar wood as a pretreatment for enzymatic hydrolysis
    • Knappert D.R., Grethlein H.E., Converse A.O. Partial acid hydrolysis of poplar wood as a pretreatment for enzymatic hydrolysis. Biotechnology Bioengineering 1981, 11:67-77.
    • (1981) Biotechnology Bioengineering , vol.11 , pp. 67-77
    • Knappert, D.R.1    Grethlein, H.E.2    Converse, A.O.3
  • 18
    • 0343729979 scopus 로고    scopus 로고
    • Optimization of simultaneous saccharification and fermentation for the production of ethanol from lignocellulosic biomass
    • Krishna S., Chowdry G.V. Optimization of simultaneous saccharification and fermentation for the production of ethanol from lignocellulosic biomass. Journal of Agriculture and Food Chemistry 2000, 48:1971-1976.
    • (2000) Journal of Agriculture and Food Chemistry , vol.48 , pp. 1971-1976
    • Krishna, S.1    Chowdry, G.V.2
  • 24
    • 34147108200 scopus 로고    scopus 로고
    • Banana skin; A novel waste for laccase production by Trametes pubescens under solid state conditions application to synthetic dye decoloration
    • Osma J.F., Herrera J.L.T., Couto S.R. Banana skin; A novel waste for laccase production by Trametes pubescens under solid state conditions application to synthetic dye decoloration. Dyes and Pigments 2007, 75:32-37.
    • (2007) Dyes and Pigments , vol.75 , pp. 32-37
    • Osma, J.F.1    Herrera, J.L.T.2    Couto, S.R.3
  • 25
    • 79954963099 scopus 로고    scopus 로고
    • Continuous ethanol production from wheat straw hydrolysate by recombinant ethanologenic Escherichia coli strain FBR5
    • Saha B.C., Cotta M.A. Continuous ethanol production from wheat straw hydrolysate by recombinant ethanologenic Escherichia coli strain FBR5. Applied Microbiology & Biotechnology 2011, 90:477-487.
    • (2011) Applied Microbiology & Biotechnology , vol.90 , pp. 477-487
    • Saha, B.C.1    Cotta, M.A.2
  • 28
    • 84900120164 scopus 로고    scopus 로고
    • Genetic improvement of sugarcane (Saccharum spp.) as an energy crop
    • Springer Science+Business Media, LLC, Newy York, NY, W. Vermerris (Ed.)
    • Tew T., Cobill R. Genetic improvement of sugarcane (Saccharum spp.) as an energy crop. Genetic Improvement of Bioenergy Crops 2008, 249-272. Springer Science+Business Media, LLC, Newy York, NY. W. Vermerris (Ed.).
    • (2008) Genetic Improvement of Bioenergy Crops , pp. 249-272
    • Tew, T.1    Cobill, R.2
  • 32
    • 34548049106 scopus 로고    scopus 로고
    • U.S. Department of Energy Office of Science and Office of Energy Efficiency and Renewable Energy, Washington, DC, USA, Available:U.S.DOE
    • U.S.DOE Breaking the Biological Barriers to Cellulosic Ethanol: A Joint Research Agenda, DOE/SC/EE-0095 2006, U.S. Department of Energy Office of Science and Office of Energy Efficiency and Renewable Energy, Washington, DC, USA, Available:. http://genomicscience.energy.gov/biofuels/b2bworkshop.shtml.
    • (2006) Breaking the Biological Barriers to Cellulosic Ethanol: A Joint Research Agenda, DOE/SC/EE-0095
  • 33
    • 68149159510 scopus 로고    scopus 로고
    • U.S. Department of Energy Office of Energy Efficiency and Renewable Energy, Washington, DC, USA, Available: U.S.DOE
    • U.S.DOE Biomass: Multi-year Program Plan 2009, U.S. Department of Energy Office of Energy Efficiency and Renewable Energy, Washington, DC, USA, Available:. http://www1.eere.energy.gov/biomass/pdfs/mypp.pdf.
    • (2009) Biomass: Multi-year Program Plan
  • 34
    • 1542615147 scopus 로고    scopus 로고
    • Effect of xylan and lignin removal by batch and flow through pretreatment on the enzymatic digestibility of corn stover cellulose
    • Yang B., Wyman C.E. Effect of xylan and lignin removal by batch and flow through pretreatment on the enzymatic digestibility of corn stover cellulose. Biotechnology and Bioengineering 2004, 86:88-95.
    • (2004) Biotechnology and Bioengineering , vol.86 , pp. 88-95
    • Yang, B.1    Wyman, C.E.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.