메뉴 건너뛰기




Volumn 72, Issue 3, 2008, Pages 173-188

Large margin vs. large volume in transductive learning

Author keywords

Large margin; Large volume; Learning principles; Transductive learning; TSVM

Indexed keywords

BOOLEAN FUNCTIONS; OPTIMIZATION; SET THEORY;

EID: 48349091260     PISSN: 08856125     EISSN: 15730565     Source Type: Journal    
DOI: 10.1007/s10994-008-5071-9     Document Type: Conference Paper
Times cited : (16)

References (20)
  • 1
    • 0006456134 scopus 로고    scopus 로고
    • Geometry in learning
    • Mathematical Association of America Washington
    • Bennett, C., & Bredensteiner, E. (2000). Geometry in learning. In Geometry at work (pp. 132-145). Washington: Mathematical Association of America.
    • (2000) Geometry at Work , pp. 132-145
    • Bennett, C.1    Bredensteiner, E.2
  • 2
    • 0010805362 scopus 로고    scopus 로고
    • Learning from labeled and unlabeled data using graph mincuts
    • Blum, A., & Chawla, S. (2001). Learning from labeled and unlabeled data using graph mincuts. In ICML (pp. 19-26).
    • (2001) ICML , pp. 19-26
    • Blum, A.1    Chawla, S.2
  • 6
    • 24344495921 scopus 로고    scopus 로고
    • Explicit learning curves for transduction and application to clustering and compression algorithms
    • Derbeko, P., El-Yaniv, R., & Meir, R. (2004). Explicit learning curves for transduction and application to clustering and compression algorithms. Journal of Artificial Intelligence Research, 22, 117-142.
    • (2004) Journal of Artificial Intelligence Research , vol.22 , pp. 117-142
    • Derbeko, P.1    El-Yaniv, R.2    Meir, R.3
  • 7
    • 48349084267 scopus 로고    scopus 로고
    • Transductive Rademacher complexity and its applications
    • El-Yaniv, R., & Pechyony, D. (2007). Transductive Rademacher complexity and its applications. In COLT.
    • (2007) COLT
    • El-Yaniv, R.1    Pechyony, D.2
  • 11
    • 48349101520 scopus 로고    scopus 로고
    • An analysis of graph cut size for transductive learning
    • Hanneke, S. (2006). An analysis of graph cut size for transductive learning. In ICML.
    • (2006) ICML
    • Hanneke, S.1
  • 12
    • 0004151494 scopus 로고
    • Cambridge University Press Cambridge
    • Horn, R., & Johnson, C. (1990). Matrix analysis. Cambridge: Cambridge University Press.
    • (1990) Matrix Analysis
    • Horn, R.1    Johnson, C.2
  • 16
    • 0042868698 scopus 로고    scopus 로고
    • Support vector machine active learning with applications to text classification
    • Tong, S., & Koller, D. (2001). Support vector machine active learning with applications to text classification. Journal of Machine Learning Research, 2, 45-66.
    • (2001) Journal of Machine Learning Research , vol.2 , pp. 45-66
    • Tong, S.1    Koller, D.2
  • 20
    • 56049107328 scopus 로고    scopus 로고
    • Transductive classification with local learning regularization
    • Wu, M., & Schölkopf, B. (2007). Transductive classification with local learning regularization. In AISTATS.
    • (2007) AISTATS
    • Wu, M.1    Schölkopf, B.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.