메뉴 건너뛰기




Volumn 114, Issue 12, 2013, Pages 2729-2737

GPNMB enhances bone regeneration by promoting angiogenesis and osteogenesis: Potential role for tissue engineering bone

Author keywords

ANGIOGENESIS; BONE GENERATION; FGFR 1; GPNMB; OSTEOGENESIS

Indexed keywords

3 [4 METHYL 2 (2 OXO 3 INDOLINYLMETHYLIDENYL) 3 PYRROLYL]PROPIONIC ACID; ALKALINE PHOSPHATASE; FIBROBLAST GROWTH FACTOR RECEPTOR 1; GLYCOPROTEIN NON METASTATIC MELANOMA PROTEIN B; MESSENGER RNA; OSTEOCALCIN; PROTEIN; RECOMBINANT GLYCOPROTEIN NON METASTATIC MELANOMA PROTEIN B; RECOMBINANT PROTEIN; SMALL INTERFERING RNA; UNCLASSIFIED DRUG;

EID: 84885618025     PISSN: 07302312     EISSN: 10974644     Source Type: Journal    
DOI: 10.1002/jcb.24621     Document Type: Article
Times cited : (51)

References (33)
  • 4
    • 70350029581 scopus 로고    scopus 로고
    • Neutrophil MMP-9 proenzyme, unencumbered by TIMP-1, undergoes efficient activation in vivo and catalytically induces angiogenesis via a basic fibroblast growth factor (FGF-2)/FGFR-2 pathway
    • Ardi VC, Van den Steen PE, Opdenakker G, Schweighofer B, Deryugina EI, Quigley JP,. 2009. Neutrophil MMP-9 proenzyme, unencumbered by TIMP-1, undergoes efficient activation in vivo and catalytically induces angiogenesis via a basic fibroblast growth factor (FGF-2)/FGFR-2 pathway. J Cell Biochem 284: 25854-25866.
    • (2009) J Cell Biochem , vol.284 , pp. 25854-25866
    • Ardi, V.C.1    Van Den Steen, P.E.2    Opdenakker, G.3    Schweighofer, B.4    Deryugina, E.I.5    Quigley, J.P.6
  • 5
    • 84875468976 scopus 로고    scopus 로고
    • Development: Growing a blood vessel network
    • Baumann K,. 2013. Development: Growing a blood vessel network. Nat Rev Mol Cell Biol 14: 127.
    • (2013) Nat Rev Mol Cell Biol , vol.14 , pp. 127
    • Baumann, K.1
  • 6
    • 78751471555 scopus 로고    scopus 로고
    • Ginsenoside-Rg1 induces angiogenesis via non-genomic crosstalk of glucocorticoid receptor and fibroblast growth factor receptor-1
    • Cheung LW, Leung KW, Wong CK, Wong RN, Wong AS,. 2011. Ginsenoside-Rg1 induces angiogenesis via non-genomic crosstalk of glucocorticoid receptor and fibroblast growth factor receptor-1. Cardiovasc Res 89: 419-425.
    • (2011) Cardiovasc Res , vol.89 , pp. 419-425
    • Cheung, L.W.1    Leung, K.W.2    Wong, C.K.3    Wong, R.N.4    Wong, A.S.5
  • 7
    • 84875056373 scopus 로고    scopus 로고
    • Bone ingrowth and vascular supply in experimental spinal fusion with platelet-rich plasma
    • Cinotti G, Corsi A, Sacchetti B, Riminucci M, Bianco P, Giannicola G,. 2013. Bone ingrowth and vascular supply in experimental spinal fusion with platelet-rich plasma. Spine 38: 385-391.
    • (2013) Spine , vol.38 , pp. 385-391
    • Cinotti, G.1    Corsi, A.2    Sacchetti, B.3    Riminucci, M.4    Bianco, P.5    Giannicola, G.6
  • 8
    • 84885593263 scopus 로고    scopus 로고
    • Combined angiogenic and osteogenic factor delivery for bone regenerative engineering
    • Cui Q, Dighe AS, Irvine J,. 2013. Combined angiogenic and osteogenic factor delivery for bone regenerative engineering. Curr Pharm Des 19: 3374-3383.
    • (2013) Curr Pharm des , vol.19 , pp. 3374-3383
    • Cui, Q.1    Dighe, A.S.2    Irvine, J.3
  • 9
    • 84865441732 scopus 로고    scopus 로고
    • Role of FGFs/FGFRs in skeletal development and bone regeneration
    • Du X, Xie Y, Xian CJ, Chen L,. 2012. Role of FGFs/FGFRs in skeletal development and bone regeneration. J Cell Physiol 227: 3731-3743.
    • (2012) J Cell Physiol , vol.227 , pp. 3731-3743
    • Du, X.1    Xie, Y.2    Xian, C.J.3    Chen, L.4
  • 11
    • 84858158696 scopus 로고    scopus 로고
    • Coupling of osteogenesis and angiogenesis in bone substitute healing - A brief overview
    • Götz W, Reichert C, Canullo L, Jäger A, Heinemann F,. 2012. Coupling of osteogenesis and angiogenesis in bone substitute healing-A brief overview. Ann Anat 194: 171-173.
    • (2012) Ann Anat , vol.194 , pp. 171-173
    • Götz, W.1    Reichert, C.2    Canullo, L.3    Jäger, A.4    Heinemann, F.5
  • 14
    • 80052015813 scopus 로고    scopus 로고
    • Molecular control of endothelial cell behaviour during blood vessel morphogenesis
    • Herbert SP, Stainier DY,. 2011. Molecular control of endothelial cell behaviour during blood vessel morphogenesis. Nat Rev Mol Cell Biol 12: 551-564.
    • (2011) Nat Rev Mol Cell Biol , vol.12 , pp. 551-564
    • Herbert, S.P.1    Stainier, D.Y.2
  • 15
    • 17644374486 scopus 로고    scopus 로고
    • Combined Angiogenic and osteogenic factor delivery enhances bone marrow stromal cell-driven bone regeneration
    • Huang YC, Kaigler D, Rice KG, Krebsbach PH, Mooney DJ,. 2005. Combined Angiogenic and osteogenic factor delivery enhances bone marrow stromal cell-driven bone regeneration. J Bone Miner Res 20: 848-857.
    • (2005) J Bone Miner Res , vol.20 , pp. 848-857
    • Huang, Y.C.1    Kaigler, D.2    Rice, K.G.3    Krebsbach, P.H.4    Mooney, D.J.5
  • 16
    • 0036484419 scopus 로고    scopus 로고
    • The American academy of orthopaedic surgeons outcomes instruments normative values from the general population
    • Hunsaker FG, Cioffi DA, Amadio PC, Wright JG, Caughlin B,. 2002. The American academy of orthopaedic surgeons outcomes instruments normative values from the general population. J Bone Joint Surg Am 84: 208-215.
    • (2002) J Bone Joint Surg Am , vol.84 , pp. 208-215
    • Hunsaker, F.G.1    Cioffi, D.A.2    Amadio, P.C.3    Wright, J.G.4    Caughlin, B.5
  • 17
    • 84879682789 scopus 로고    scopus 로고
    • Evidence that FGFR1 loss-of-function mutations may cause variable skeletal malformations in patients with Kallmann syndrome
    • Jarzabek K, Wolczynski S, Lesniewicz R, Plessis G, Kottler M,. 2012. Evidence that FGFR1 loss-of-function mutations may cause variable skeletal malformations in patients with Kallmann syndrome. Adv Med Sci 57: 314-321.
    • (2012) Adv Med Sci , vol.57 , pp. 314-321
    • Jarzabek, K.1    Wolczynski, S.2    Lesniewicz, R.3    Plessis, G.4    Kottler, M.5
  • 18
    • 45549085001 scopus 로고    scopus 로고
    • Osteogenesis and angiogenesis: The potential for engineering bone
    • Kanczler J, Oreffo R,. 2008. Osteogenesis and angiogenesis: The potential for engineering bone. Eur Cell Mater 15: 100-114.
    • (2008) Eur Cell Mater , vol.15 , pp. 100-114
    • Kanczler, J.1    Oreffo, R.2
  • 19
    • 0036225281 scopus 로고    scopus 로고
    • Reaching a genetic and molecular understanding of skeletal development
    • Karsenty G, Wagner EF,. 2002. Reaching a genetic and molecular understanding of skeletal development. Dev Cell 2: 389-406.
    • (2002) Dev Cell , vol.2 , pp. 389-406
    • Karsenty, G.1    Wagner, E.F.2
  • 20
    • 84863689885 scopus 로고    scopus 로고
    • In vitro assays using primary embryonic mouse lymphatic endothelial cells uncover key roles for FGFR1 signalling in lymphangiogenesis
    • Kazenwadel J, Secker GA, Betterman KL, Harvey NL,. 2012. In vitro assays using primary embryonic mouse lymphatic endothelial cells uncover key roles for FGFR1 signalling in lymphangiogenesis. PLoS ONE 7: e40497.
    • (2012) PLoS ONE , vol.7
    • Kazenwadel, J.1    Secker, G.A.2    Betterman, K.L.3    Harvey, N.L.4
  • 22
    • 84872804317 scopus 로고    scopus 로고
    • Glyceollins, a novel class of soy phytoalexins, inhibit angiogenesis by blocking the VEGF and bFGF signaling pathways
    • Lee SH, Lee J, Jung MH, Lee YM,. 2013. Glyceollins, a novel class of soy phytoalexins, inhibit angiogenesis by blocking the VEGF and bFGF signaling pathways. Mol Nutr Food Res 57: 225-234.
    • (2013) Mol Nutr Food Res , vol.57 , pp. 225-234
    • Lee, S.H.1    Lee, J.2    Jung, M.H.3    Lee, Y.M.4
  • 23
    • 84858159772 scopus 로고    scopus 로고
    • Fibroblast growth factor signaling controlling bone formation
    • Marie PJ,. 2012. Fibroblast growth factor signaling controlling bone formation. Gene 498: 1-4.
    • (2012) Gene , vol.498 , pp. 1-4
    • Marie, P.J.1
  • 24
    • 84858960891 scopus 로고    scopus 로고
    • FGF/FGFR signaling in bone formation: Progress and perspectives
    • Marie PJ, Miraoui H, Sévère N,. 2012. FGF/FGFR signaling in bone formation: Progress and perspectives. Growth Factors 30: 117-123.
    • (2012) Growth Factors , vol.30 , pp. 117-123
    • Marie, P.J.1    Miraoui, H.2    Sévère, N.3
  • 26
    • 41949092558 scopus 로고    scopus 로고
    • Fibroblast growth factor regulation of neovascularization
    • Murakami M, Simons M,. 2008. Fibroblast growth factor regulation of neovascularization. Curr Opin Hematol 15: 215.
    • (2008) Curr Opin Hematol , vol.15 , pp. 215
    • Murakami, M.1    Simons, M.2
  • 29
    • 79251495438 scopus 로고    scopus 로고
    • Angiogenesis and osteogenesis enhanced by bFGF ex vivo gene therapy for bone tissue engineering in reconstruction of calvarial defects
    • Qu D, Li J, Li Y, Gao Y, Zuo Y, Hsu Y, Hu J,. 2011. Angiogenesis and osteogenesis enhanced by bFGF ex vivo gene therapy for bone tissue engineering in reconstruction of calvarial defects. J Biomed Mater Res A 96: 543-551.
    • (2011) J Biomed Mater Res A , vol.96 , pp. 543-551
    • Qu, D.1    Li, J.2    Li, Y.3    Gao, Y.4    Zuo, Y.5    Hsu, Y.6    Hu, J.7
  • 30
    • 77957809884 scopus 로고    scopus 로고
    • ADAM10 releases a soluble form of the GPNMB/Osteoactivin extracellular domain with angiogenic properties
    • Rose AA, Annis MG, Dong Z, Pepin F, Hallett M, Park M, Siegel PM,. 2010. ADAM10 releases a soluble form of the GPNMB/Osteoactivin extracellular domain with angiogenic properties. PLoS ONE 5: e12093.
    • (2010) PLoS ONE , vol.5
    • Rose, A.A.1    Annis, M.G.2    Dong, Z.3    Pepin, F.4    Hallett, M.5    Park, M.6    Siegel, P.M.7
  • 31
    • 0035185649 scopus 로고    scopus 로고
    • Cloning and characterization of osteoactivin, a novel cDNA expressed in osteoblasts
    • Safadi F, Xu J, Smock SL, Rico MC, Owen TA, Popoff SN,. 2001. Cloning and characterization of osteoactivin, a novel cDNA expressed in osteoblasts. J Cell Biochem 84: 12-26.
    • (2001) J Cell Biochem , vol.84 , pp. 12-26
    • Safadi, F.1    Xu, J.2    Smock, S.L.3    Rico, M.C.4    Owen, T.A.5    Popoff, S.N.6
  • 32
    • 0035896629 scopus 로고    scopus 로고
    • Molecular cloning of a dendritic cell-associated transmembrane protein, DC-HIL, that promotes RGD-dependent adhesion of endothelial cells through recognition of heparan sulfate proteoglycans
    • Shikano S, Bonkobara M, Zukas PK, Ariizumi K,. 2001. Molecular cloning of a dendritic cell-associated transmembrane protein, DC-HIL, that promotes RGD-dependent adhesion of endothelial cells through recognition of heparan sulfate proteoglycans. J Cell Biochem 276: 8125-8134.
    • (2001) J Cell Biochem , vol.276 , pp. 8125-8134
    • Shikano, S.1    Bonkobara, M.2    Zukas, P.K.3    Ariizumi, K.4
  • 33
    • 84875784589 scopus 로고    scopus 로고
    • Marine-derived angiogenesis inhibitors for cancer therapy
    • Wang Y-Q, Miao Z-H,. 2013. Marine-derived angiogenesis inhibitors for cancer therapy. Mar Drugs 11: 903-933.
    • (2013) Mar Drugs , vol.11 , pp. 903-933
    • Wang, Y.-Q.1    Miao, Z.-H.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.