-
1
-
-
60849107722
-
Integrated enzyme-based biofuel cells-a review
-
I. Willner et al., Integrated enzyme-based biofuel cells-a review, Fuel Cells 9(1); 7-24 (2009).
-
(2009)
Fuel Cells
, vol.9
, Issue.1
, pp. 7-24
-
-
Willner, I.1
-
2
-
-
7544227821
-
Enzymatic biofuel cells for implantable and microscale devices
-
S. C. Barton, J. Gallaway, and P. Atanassov, Enzymatic biofuel cells for implantable and microscale devices, Chem. Rev. 104(10); 4867-4886 (2004).
-
(2004)
Chem. Rev.
, vol.104
, Issue.10
, pp. 4867-4886
-
-
Barton, S.C.1
Gallaway, J.2
Atanassov, P.3
-
3
-
-
49049118534
-
Enzymes as working or inspirational electrocatalysts for fuel cells and electrolysis
-
J. A. Cracknell, K. A. Vincent, and F. A. Armstrong, Enzymes as working or inspirational electrocatalysts for fuel cells and electrolysis, Chem. Rev. 108; 2439-2461 (2008).
-
(2008)
Chem. Rev.
, vol.108
, pp. 2439-2461
-
-
Cracknell, J.A.1
Vincent, K.A.2
Armstrong, F.A.3
-
4
-
-
84885532282
-
-
Miniature biological fuel cell that is operational under physiological conditions comprising enzymes, Patent Application WO WO, Therasense, Inc.
-
A. Heller et al., Miniature biological fuel cell that is operational under physiological conditions comprising enzymes, Patent Application WO WO, Therasense, Inc., (2003).
-
(2003)
-
-
Heller, A.1
-
5
-
-
34548270983
-
Rapid and efficient electrocatalytic CO2/CO interconversions by Carboxydothermus hydrogenoformans CO dehydrogenase I on an electrode
-
A. Parkin et al., Rapid and efficient electrocatalytic CO2/CO interconversions by Carboxydothermus hydrogenoformans CO dehydrogenase I on an electrode, J. Am. Chem. Soc. 129(34); 10328-10329 (2007).
-
(2007)
J. Am. Chem. Soc.
, vol.129
, Issue.34
, pp. 10328-10329
-
-
Parkin, A.1
-
6
-
-
49449111220
-
Reversible interconversion of carbon dioxide and formate by an electroactive enzyme
-
T. Reda et al., Reversible interconversion of carbon dioxide and formate by an electroactive enzyme, Proc. Natl. Acad. Sci. USA 105(31); 10654-10658 (2008).
-
(2008)
Proc. Natl. Acad. Sci. USA
, vol.105
, Issue.31
, pp. 10654-10658
-
-
Reda, T.1
-
7
-
-
0037613548
-
Reversible, electrochemical interconversion ofNADH and NAD(+) by the Catalytic (I lambda) subcomplex of mitochondrial NADH: Ubiquinone oxidoreductase (Complex I)
-
Y. B. Zu, R. J. Shannon, and J. Hirst, Reversible, electrochemical interconversion ofNADH and NAD(+) by the Catalytic (I lambda) subcomplex of mitochondrial NADH: Ubiquinone oxidoreductase (Complex I), J. Am. Chem. Soc. 125(20); 6020-6021 (2003).
-
(2003)
J. Am. Chem. Soc.
, vol.125
, Issue.20
, pp. 6020-6021
-
-
Zu, Y.B.1
Shannon, R.J.2
Hirst, J.3
-
8
-
-
35748933836
-
Investigating and exploiting the electrocatalytic properties of hydrogenases
-
K. A. Vincent, A. Parkin, and F. A. Armstrong, Investigating and exploiting the electrocatalytic properties of hydrogenases, Chem. Rev. 107(10); 4366-4413 (2007).
-
(2007)
Chem. Rev.
, vol.107
, Issue.10
, pp. 4366-4413
-
-
Vincent, K.A.1
Parkin, A.2
Armstrong, F.A.3
-
9
-
-
49049115593
-
Direct electrochemistry of redox enzymes as a tool for mechanistic studies
-
C. Léger and P. Bertrand, Direct electrochemistry of redox enzymes as a tool for mechanistic studies, Chem. Rev. 108(7); 2379-2438 (2008).
-
(2008)
Chem. Rev.
, vol.108
, Issue.7
, pp. 2379-2438
-
-
Léger, C.1
Bertrand, P.2
-
10
-
-
0001398340
-
Alternative view of enzyme reactions
-
USA
-
M. J. S. Dewar, Alternative view of enzyme reactions, Proc. Natl. Acad. Sci. USA 82(8); 2225 (1985).
-
(1985)
Proc. Natl. Acad. Sci.
, vol.82
, Issue.8
, pp. 2225
-
-
Dewar, M.J.S.1
-
11
-
-
39049132264
-
[FeFe]-hydrogenase-catalysed H2 production in a photoelectrochemical biofuel cell
-
M. Hambourger et al., [FeFe]-hydrogenase-catalysed H2 production in a photoelectrochemical biofuel cell, J. Am. Chem. Soc. 130, 2015-2022 (2008).
-
(2008)
J. Am. Chem. Soc.
, vol.130
, pp. 2015-2022
-
-
Hambourger, M.1
-
12
-
-
0037149937
-
Direct comparison of the electrocatalytic oxidation of hydrogen by an enzyme and a platinum catalyst
-
A. K. Jones et al., Direct comparison of the electrocatalytic oxidation of hydrogen by an enzyme and a platinum catalyst, Chem. Commun. 866-867 (2002).
-
(2002)
Chem. Commun.
, pp. 866-867
-
-
Jones, A.K.1
-
13
-
-
35748930865
-
Structure/function relationships of [NiFe]- and [FeFe]-hydrogenases
-
J. C. Fontecilla-Camps et al., Structure/function relationships of [NiFe]- and [FeFe]-hydrogenases, Chem. Rev. 107; 4273-4303 (2007).
-
(2007)
Chem. Rev.
, vol.107
, pp. 4273-4303
-
-
Fontecilla-Camps, J.C.1
-
14
-
-
35848964033
-
Fundamentals of H2 binding and reactivity on transition metals underlying hydrogenase function and H2 production and storage
-
G. J. Kubas, Fundamentals of H2 binding and reactivity on transition metals underlying hydrogenase function and H2 production and storage, Chem. Rev. 107(10); 4152-4205 (2007).
-
(2007)
Chem. Rev.
, vol.107
, Issue.10
, pp. 4152-4205
-
-
Kubas, G.J.1
-
15
-
-
0034685468
-
Photochemistry at the active site of the carbon monoxide inhibited form of the iron-only hydrogenase (CpI)
-
B. J. Lemon and J. W. Peters, Photochemistry at the active site of the carbon monoxide inhibited form of the iron-only hydrogenase (CpI), J. Am. Chem. Soc. 122(15); 3793-3794 (2000).
-
(2000)
J. Am. Chem. Soc.
, vol.122
, Issue.15
, pp. 3793-3794
-
-
Lemon, B.J.1
Peters, J.W.2
-
16
-
-
0039182024
-
Binding of exogenously added carbon monoxide at the active site of the iron-only hydrogenase (CpI) from Clostridium pasteurianum
-
B. J. Lemon and J.W. Peters, Binding of exogenously added carbon monoxide at the active site of the iron-only hydrogenase (CpI) from Clostridium pasteurianum, Biochemistry 38(40); 12969-12973 (1999).
-
(1999)
Biochemistry
, vol.38
, Issue.40
, pp. 12969-12973
-
-
Lemon, B.J.1
Peters, J.W.2
-
17
-
-
0038375489
-
Enzyme electrokinetics: Electrochemical studies of the anaerobic interconversions between active and inactive states of Allochromatium vinosum [NiFe]-hydrogenase
-
A. K. Jones et al., Enzyme electrokinetics: Electrochemical studies of the anaerobic interconversions between active and inactive states of Allochromatium vinosum [NiFe]-hydrogenase, J. Am. Chem. Soc. 125; 8505-8514 (2003).
-
(2003)
J. Am. Chem. Soc.
, vol.125
, pp. 8505-8514
-
-
Jones, A.K.1
-
18
-
-
28044470050
-
Electrocatalytic hydrogen oxidation by an enzyme at high carbon monoxide or oxygen levels
-
USA
-
K. A. Vincent et al., Electrocatalytic hydrogen oxidation by an enzyme at high carbon monoxide or oxygen levels, Proc. Natl. Acad. Sci. USA 102; 16951-16954 (2005).
-
(2005)
Proc. Natl. Acad. Sci.
, vol.102
, pp. 16951-16954
-
-
Vincent, K.A.1
-
19
-
-
40149096419
-
Enzymatic oxidation of H2 in Atmospheric O2: The electrochemistry of energy generation from trace H2 by aerobic microorganisms
-
J. A. Cracknell et al., Enzymatic oxidation of H2 in Atmospheric O2: The electrochemistry of energy generation from trace H2 by aerobic microorganisms, J. Am. Chem. Soc. 130; 424-425 (2008).
-
(2008)
J. Am. Chem. Soc.
, vol.130
, pp. 424-425
-
-
Cracknell, J.A.1
-
20
-
-
50149121231
-
In situ formation of an oxygen-evolving catalyst in neutral water containing phosphate and Co2{thorn}
-
M.W. Kanan and D. G. Nocera, In situ formation of an oxygen-evolving catalyst in neutral water containing phosphate and Co2{thorn}, Science 321(5892); 1072-1075 (2008).
-
(2008)
Science
, vol.321
, Issue.5892
, pp. 1072-1075
-
-
Kanan, M.W.1
Nocera, D.G.2
-
21
-
-
34547805717
-
O2 and N2O activation by bi-, tri-, and tetranuclear Cu clusters in biology
-
E. I. Solomon et al., O2 and N2O activation by bi-, tri-, and tetranuclear Cu clusters in biology, Acc. Chem. Res. 40(7); 581-591 (2007).
-
(2007)
Acc. Chem. Res.
, vol.40
, Issue.7
, pp. 581-591
-
-
Solomon, E.I.1
-
22
-
-
0346850034
-
Oxygen is electroreduced to water on a "wired" enzyme electrode at a lesser overpotential than on platinum
-
N. Mano et al., Oxygen is electroreduced to water on a "wired" enzyme electrode at a lesser overpotential than on platinum, J. Am. Chem. Soc. 125(50); 15290-15291 (2003).
-
(2003)
J. Am. Chem. Soc.
, vol.125
, Issue.50
, pp. 15290-15291
-
-
Mano, N.1
-
23
-
-
33846596556
-
Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability
-
V. R. Stamenkovic et al., Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability, Science 315(5811); 493-497 (2007).
-
(2007)
Science
, vol.315
, Issue.5811
, pp. 493-497
-
-
Stamenkovic, V.R.1
-
24
-
-
33646230567
-
Methanol tolerance of a mediated, biocatalytic oxygen cathode
-
Y. Sun and S. C. Barton, Methanol tolerance of a mediated, biocatalytic oxygen cathode, J. Electroanal. Chem. 590(1); 57-65 (2006).
-
(2006)
J. Electroanal. Chem.
, vol.590
, Issue.1
, pp. 57-65
-
-
Sun, Y.1
Barton, S.C.2
-
25
-
-
0035812365
-
A miniature biofuel cell
-
T. Chen et al., A miniature biofuel cell, J. Am. Chem. Soc. 123(35); 8630-8631 (2001).
-
(2001)
J. Am. Chem. Soc.
, vol.123
, Issue.35
, pp. 8630-8631
-
-
Chen, T.1
-
26
-
-
60849084448
-
Performance of a glucose/O2 enzymatic biofuel cell containing a mediated Melanocarpus albomyces laccase cathode in a physiological buffer
-
P. Kavanagh et al., Performance of a glucose/O2 enzymatic biofuel cell containing a mediated Melanocarpus albomyces laccase cathode in a physiological buffer, Fuel Cells 9(1); 79-84 (2009).
-
(2009)
Fuel Cells
, vol.9
, Issue.1
, pp. 79-84
-
-
Kavanagh, P.1
-
27
-
-
52649106024
-
Highly efficient and versatile anodes for biofuel cells based on cellobiose dehydrogenase from Myriococcum thermophilum
-
F. Tasca et al., Highly efficient and versatile anodes for biofuel cells based on cellobiose dehydrogenase from Myriococcum thermophilum, J. Phys. Chem.C112(35); 13668-13673 (2008).
-
(2008)
J. Phys. Chem.
, vol.C112
, Issue.35
, pp. 13668-13673
-
-
Tasca, F.1
-
28
-
-
0036303472
-
Crystal structure of the flavoprotein domain of the extracellular flavocytochrome cellobiose dehydrogenase
-
B. M. Hallberg et al., Crystal structure of the flavoprotein domain of the extracellular flavocytochrome cellobiose dehydrogenase, J. Mol. Biol. 315(3); 421-434 (2002).
-
(2002)
J. Mol. Biol.
, vol.315
, Issue.3
, pp. 421-434
-
-
Hallberg, B.M.1
-
29
-
-
0036479218
-
Crystal structure of quinohemoprotein alcohol dehydrogenase from Comamonas testosteroni-structural basis for substrate oxidation and electron transfer
-
A. Oubrie et al., Crystal structure of quinohemoprotein alcohol dehydrogenase from Comamonas testosteroni-structural basis for substrate oxidation and electron transfer, J. Biol. Chem. 277(5); 3727-3732 (2002).
-
(2002)
J. Biol. Chem.
, vol.277
, Issue.5
, pp. 3727-3732
-
-
Oubrie, A.1
-
30
-
-
55049095938
-
Efficient electrocatalytic oxygen reduction by the "blue" copper oxidase, laccase, directly attached to chemically modified carbons
-
C. F. Blanford et al., Efficient electrocatalytic oxygen reduction by the "blue" copper oxidase, laccase, directly attached to chemically modified carbons, Faraday Discuss. 140; 319-335 (2008).
-
(2008)
Faraday Discuss
, vol.140
, pp. 319-335
-
-
Blanford, C.F.1
-
31
-
-
0030661175
-
Modification of carbon fiber surfaces by electrochemical reduction of aryl diazonium salts: Application to carbon epoxy composites
-
M. Delamar et al., Modification of carbon fiber surfaces by electrochemical reduction of aryl diazonium salts: Application to carbon epoxy composites, Carbon 35(6); 801-807 (1997).
-
(1997)
Carbon
, vol.35
, Issue.6
, pp. 801-807
-
-
Delamar, M.1
-
32
-
-
33751516325
-
Electron-conducting redox hydrogels: Design, characteristics and synthesis
-
A. Heller, Electron-conducting redox hydrogels: Design, characteristics and synthesis, Curr. Opin. Chem. Biol. 10; 664-672 (2006).
-
(2006)
Curr. Opin. Chem. Biol.
, vol.10
, pp. 664-672
-
-
Heller, A.1
-
33
-
-
34147178293
-
Fructose/dioxygen biofuel cell based on direct electron transfer-type bioelectrocatalysis
-
Y. Kamitaka et al., Fructose/dioxygen biofuel cell based on direct electron transfer-type bioelectrocatalysis, Phys. Chem. Chem. Phys. 9(15); 1793-1801 (2007).
-
(2007)
Phys. Chem. Chem. Phys.
, vol.9
, Issue.15
, pp. 1793-1801
-
-
Kamitaka, Y.1
-
34
-
-
46049112697
-
Kinetics of redox polymer-mediated enzyme electrodes
-
J. W. Gallaway and S. A. Calabrese Barton, Kinetics of redox polymer-mediated enzyme electrodes, J. Am. Chem. Soc. 130(26); 8527-8536 (2008).
-
(2008)
J. Am. Chem. Soc.
, vol.130
, Issue.26
, pp. 8527-8536
-
-
Gallaway, J.W.1
Calabrese Barton, S.A.2
-
35
-
-
34547269611
-
Hydrogenase-coated carbon nanotubes for efficient H2 oxidation
-
M. A. Alonso-Lomillo et al., Hydrogenase-coated carbon nanotubes for efficient H2 oxidation, Nano Lett. 7(6); 1603-1608 (2007).
-
(2007)
Nano Lett
, vol.7
, Issue.6
, pp. 1603-1608
-
-
Alonso-Lomillo, M.A.1
-
36
-
-
58649121731
-
Oxygen-tolerant H2 oxidation by membrane-bound [NiFe]- hydrogenases of Ralstonia species: Coping with low-level H2 in air
-
M. Ludwig et al., Oxygen-tolerant H2 oxidation by membrane-bound [NiFe]- hydrogenases of Ralstonia species: Coping with low-level H2 in air, J. Biol. Chem. 284; 465-477 (2009).
-
(2009)
J. Biol. Chem
, vol.284
, pp. 465-477
-
-
Ludwig, M.1
-
37
-
-
33845270211
-
Electricity from low-levelH2 in still air-anultimate test for an oxygen tolerant hydrogenase
-
K. A.Vincent et al., Electricity from low-levelH2 in still air-anultimate test for an oxygen tolerant hydrogenase, Chem. Commun. 2006 (48); 5033-5035 (2006).
-
(2006)
Chem. Commun. 2006
, vol.48
, pp. 5033-5035
-
-
Vincent, K.A.1
-
38
-
-
33646888422
-
Potentially implantable miniature batteries
-
A. Heller, Potentially implantable miniature batteries, Anal. Bioanal. Chem. 385(3); 469-473 (2006).
-
(2006)
Anal. Bioanal. Chem.
, vol.385
, Issue.3
, pp. 469-473
-
-
Heller, A.1
-
39
-
-
62849098726
-
Biofuel cell controlled by enzyme logic systems
-
L. Amir et al., Biofuel cell controlled by enzyme logic systems, J. Am. Chem. Soc. 131(2); 826-832 (2009).
-
(2009)
J. Am. Chem. Soc.
, vol.131
, Issue.2
, pp. 826-832
-
-
Amir, L.1
-
40
-
-
58249118878
-
Oxygen reduction activity of a copper complex of 3,5-diamino-1,2,4-triazole supported on carbon black
-
M. S. Thorum, J.Yadav, and A. A. Gewirth, Oxygen reduction activity of a copper complex of 3,5-diamino-1,2,4-triazole supported on carbon black, Angew. Chem. Int. Ed. 48(1); 165-167 (2009).
-
(2009)
Angew. Chem. Int. Ed
, vol.48
, Issue.1
, pp. 165-167
-
-
Thorum, M.S.1
Yadav, J.2
Gewirth, A.A.3
|