메뉴 건너뛰기




Volumn 5, Issue 5, 2013, Pages 308-322

CTCF depletion alters chromatin structure and transcription of myeloid-specific factors

Author keywords

CTCF; H2A.Z; myeloid; non coding RNA; RNA polymerase II; transcription

Indexed keywords

HISTONE H2AZ; LIPOPOLYSACCHARIDE; TRANSCRIPTION FACTOR CTCF; TRANSCRIPTION FACTOR EGR 1; UNTRANSLATED RNA;

EID: 84885352156     PISSN: 16742788     EISSN: 17594685     Source Type: Journal    
DOI: 10.1093/jmcb/mjt023     Document Type: Article
Times cited : (8)

References (54)
  • 1
    • 84864535173 scopus 로고    scopus 로고
    • Functional and molecular characterization of the role of CTCF in human embryonic stem cell biology
    • Balakrishnan, S.K., Witcher, M., Berggren, T.W., et al. (2012). Functional and molecular characterization of the role of CTCF in human embryonic stem cell biology. PLoS One 7, e42424.
    • (2012) PLoS One , vol.7
    • Balakrishnan, S.K.1    Witcher, M.2    Berggren, T.W.3
  • 2
    • 0025336820 scopus 로고
    • Modular structure of a chicken lysozyme silencer: Involvement of an unusual thyroid hormone receptor binding site
    • Baniahmad, A., Steiner, C., Kohne, A.C., et al. (1990). Modular structure of a chicken lysozyme silencer: involvement of an unusual thyroid hormone receptor binding site. Cell 61, 505-514.
    • (1990) Cell , vol.61 , pp. 505-514
    • Baniahmad, A.1    Steiner, C.2    Kohne, A.C.3
  • 3
    • 34249026300 scopus 로고    scopus 로고
    • High-resolution profiling of histone methylations in the human genome
    • Barski, A., Cuddapah, S., Cui, K., et al. (2007). High-resolution profiling of histone methylations in the human genome. Cell 129, 823-837.
    • (2007) Cell , vol.129 , pp. 823-837
    • Barski, A.1    Cuddapah, S.2    Cui, K.3
  • 4
    • 44649117905 scopus 로고    scopus 로고
    • Integration of external signaling pathways with the core transcriptional network in embryonic stem cells
    • Chen, X., Xu, H., Yuan, P., et al. (2008). Integration of external signaling pathways with the core transcriptional network in embryonic stem cells. Cell 133, 1106-1117.
    • (2008) Cell , vol.133 , pp. 1106-1117
    • Chen, X.1    Xu, H.2    Yuan, P.3
  • 5
    • 60149100010 scopus 로고    scopus 로고
    • Runx1 is required for the endothelial to haematopoietic cell transition but not thereafter
    • Chen, M.J., Yokomizo, T., Zeigler, B.M., et al. (2009). Runx1 is required for the endothelial to haematopoietic cell transition but not thereafter. Nature 457, 887-891.
    • (2009) Nature , vol.457 , pp. 887-891
    • Chen, M.J.1    Yokomizo, T.2    Zeigler, B.M.3
  • 6
    • 33847200412 scopus 로고    scopus 로고
    • CTCF interacts with and recruits the largest subunit of RNA polymerase II to CTCF target sites genomewide
    • Chernukhin, I., Shamsuddin, S., Kang, S.Y., et al. (2007). CTCF interacts with and recruits the largest subunit of RNA polymerase II to CTCF target sites genomewide. Mol. Cell. Biol. 27, 1631-1648.
    • (2007) Mol. Cell. Biol. , vol.27 , pp. 1631-1648
    • Chernukhin, I.1    Shamsuddin, S.2    Kang, S.Y.3
  • 7
    • 59849122478 scopus 로고    scopus 로고
    • Cutting edge: Developmental stage-specific recruitment of cohesin to CTCF sites throughout immunoglobulin loci during B lymphocyte development
    • Degner, S.C., Wong, T.P., Jankevicius, G., et al. (2009). Cutting edge: developmental stage-specific recruitment of cohesin to CTCF sites throughout immunoglobulin loci during B lymphocyte development. J. Immunol. 182, 44-48.
    • (2009) J. Immunol. , vol.182 , pp. 44-48
    • Degner, S.C.1    Wong, T.P.2    Jankevicius, G.3
  • 8
    • 0032965890 scopus 로고    scopus 로고
    • Differential expression and phosphorylation of CTCF, a c-myc transcriptional regulator, during differentiation of human myeloid cells
    • Delgado, M.D., Chernukhin, I.V., Bigas, A., et al. (1999). Differential expression and phosphorylation of CTCF, a c-myc transcriptional regulator, during differentiation of human myeloid cells. FEBS Lett. 444, 5-10.
    • (1999) FEBS Lett. , vol.444 , pp. 5-10
    • Delgado, M.D.1    Chernukhin, I.V.2    Bigas, A.3
  • 9
    • 84868554484 scopus 로고    scopus 로고
    • Commonly altered genomic regions in acute myeloid leukemia are enriched for somatic mutations involved in chromatin remodeling and splicing
    • Dolnik, A., Engelmann, J.C., Scharfenberger-Schmeer, M., et al. (2012). Commonly altered genomic regions in acute myeloid leukemia are enriched for somatic mutations involved in chromatin remodeling and splicing. Blood 120, e83-e92.
    • (2012) Blood , vol.120
    • Dolnik, A.1    Engelmann, J.C.2    Scharfenberger-Schmeer, M.3
  • 10
    • 48249153426 scopus 로고    scopus 로고
    • The insulator binding protein CTCF positions 20 nucleosomes around its binding sites across the human genome
    • Fu, Y., Sinha, M., Peterson, C.L., et al. (2008). The insulator binding protein CTCF positions 20 nucleosomes around its binding sites across the human genome. PLoS Genet. 4, e1000138.
    • (2008) PLoS Genet. , vol.4
    • Fu, Y.1    Sinha, M.2    Peterson, C.L.3
  • 11
    • 0344197733 scopus 로고    scopus 로고
    • The c-myc insulator element and matrix attachment regions define the c-myc chromosomal domain
    • Gombert, W.M., Farris, S.D., Rubio, E.D., et al. (2003). The c-myc insulator element and matrix attachment regions define the c-myc chromosomal domain. Mol. Cell. Biol. 23, 9338-9348.
    • (2003) Mol. Cell. Biol. , vol.23 , pp. 9338-9348
    • Gombert, W.M.1    Farris, S.D.2    Rubio, E.D.3
  • 12
    • 0034524132 scopus 로고    scopus 로고
    • The Myc/Max/Madnetwork and the transcriptional control of cell behavior
    • Grandori, C., Cowley, S.M., James, L.P., et al. (2000). The Myc/Max/Madnetwork and the transcriptional control of cell behavior. Annu. Rev. Cell Dev. Biol. 16, 653-699.
    • (2000) Annu. Rev. Cell Dev. Biol. , vol.16 , pp. 653-699
    • Grandori, C.1    Cowley, S.M.2    James, L.P.3
  • 13
    • 22144447520 scopus 로고    scopus 로고
    • Loss of Runx1 perturbs adult hematopoiesis and is associated with a myeloproliferative phenotype
    • Growney, J.D., Shigematsu, H., Li, Z., et al. (2005). Loss of Runx1 perturbs adult hematopoiesis and is associated with a myeloproliferative phenotype. Blood 106, 494-504.
    • (2005) Blood , vol.106 , pp. 494-504
    • Growney, J.D.1    Shigematsu, H.2    Li, Z.3
  • 14
    • 52049112345 scopus 로고    scopus 로고
    • CCCTC-binding factor activates PARP-1 affecting DNA methylation machinery
    • Guastafierro, T., Cecchinelli, B., Zampieri, M., et al. (2008). CCCTC-binding factor activates PARP-1 affecting DNA methylation machinery. J. Biol. Chem. 283, 21873-21880.
    • (2008) J. Biol. Chem. , vol.283 , pp. 21873-21880
    • Guastafierro, T.1    Cecchinelli, B.2    Zampieri, M.3
  • 15
    • 55549092726 scopus 로고    scopus 로고
    • CTCF regulates cell cycle progression of alphabeta T cells in the thymus
    • Heath, H., Ribeiro de Almeida, C., Sleutels, F., et al. (2008). CTCF regulates cell cycle progression of alphabeta T cells in the thymus. EMBO J. 27, 2839-2850.
    • (2008) EMBO J. , vol.27 , pp. 2839-2850
    • Heath, H.1    Ribeiro De Almeida, C.2    Sleutels, F.3
  • 16
    • 0029686266 scopus 로고    scopus 로고
    • Proteins of the Myc network: Essential regulators of cell growth and differentiation
    • Henriksson, M., and Luscher, B. (1996). Proteins of the Myc network: essential regulators of cell growth and differentiation. Adv. Cancer Res. 68, 109-182.
    • (1996) Adv. Cancer Res. , vol.68 , pp. 109-182
    • Henriksson, M.1    Luscher, B.2
  • 17
    • 0037099497 scopus 로고    scopus 로고
    • Transcription factor-mediated lineage switching reveals plasticity in primary committed progenitor cells
    • Heyworth, C., Pearson, S., May, G., et al. (2002). Transcription factor-mediated lineage switching reveals plasticity in primary committed progenitor cells. EMBO J. 21, 3770-3781.
    • (2002) EMBO J. , vol.21 , pp. 3770-3781
    • Heyworth, C.1    Pearson, S.2    May, G.3
  • 18
    • 84865724573 scopus 로고    scopus 로고
    • CTCF is required for neural development and stochastic expression of clustered Pcdh genes in neurons
    • Hirayama, T., Tarusawa, E., Yoshimura, Y., et al. (2012). CTCF is required for neural development and stochastic expression of clustered Pcdh genes in neurons. Cell Rep. 2, 345-357.
    • (2012) Cell Rep. , vol.2 , pp. 345-357
    • Hirayama, T.1    Tarusawa, E.2    Yoshimura, Y.3
  • 19
    • 58149498240 scopus 로고    scopus 로고
    • CTCF-dependent enhancer-blocking by alternative chromatin loop formation
    • Hou, C., Zhao, H., Tanimoto, K., et al. (2008). CTCF-dependent enhancer-blocking by alternative chromatin loop formation. Proc. Natl Acad. Sci. USA 105, 20398-20403.
    • (2008) Proc. Natl Acad. Sci. USA , vol.105 , pp. 20398-20403
    • Hou, C.1    Zhao, H.2    Tanimoto, K.3
  • 20
    • 52649132425 scopus 로고    scopus 로고
    • Genome-wide identification of in vivo protein-DNA binding sites from ChIP-Seq data
    • Jothi, R., Cuddapah, S., Barski, A., et al. (2008). Genome-wide identification of in vivo protein-DNA binding sites from ChIP-Seq data. Nucleic Acids Res. 36, 5221-5231.
    • (2008) Nucleic Acids Res. , vol.36 , pp. 5221-5231
    • Jothi, R.1    Cuddapah, S.2    Barski, A.3
  • 21
    • 33947201809 scopus 로고    scopus 로고
    • Analysis of the vertebrate insulator protein CTCF-binding sites in the human genome
    • Kim, T.H., Abdullaev, Z.K., Smith, A.D., et al. (2007). Analysis of the vertebrate insulator protein CTCF-binding sites in the human genome. Cell 128, 1231-1245.
    • (2007) Cell , vol.128 , pp. 1231-1245
    • Kim, T.H.1    Abdullaev, Z.K.2    Smith, A.D.3
  • 22
    • 0035023181 scopus 로고    scopus 로고
    • Functional phosphorylation sites in the C-terminal region of the multivalent multifunctional transcriptional factor CTCF
    • Klenova, E.M., Chernukhin, I.V., El-Kady, A., et al. (2001). Functional phosphorylation sites in the C-terminal region of the multivalent multifunctional transcriptional factor CTCF. Mol. Cell. Biol. 21, 2221-2234.
    • (2001) Mol. Cell. Biol. , vol.21 , pp. 2221-2234
    • Klenova, E.M.1    Chernukhin, I.V.2    El-Kady, A.3
  • 23
    • 70249142494 scopus 로고    scopus 로고
    • Cooperation between the INO80 complex and histone chaperones determines adaptation of stress gene transcription in the yeast Saccharomyces cerevisiae
    • Klopf, E., Paskova, L., Sole, C., et al. (2009). Cooperation between the INO80 complex and histone chaperones determines adaptation of stress gene transcription in the yeast Saccharomyces cerevisiae. Mol. Cell. Biol. 29, 4994-5007.
    • (2009) Mol. Cell. Biol. , vol.29 , pp. 4994-5007
    • Klopf, E.1    Paskova, L.2    Sole, C.3
  • 24
    • 33947400236 scopus 로고    scopus 로고
    • Regulation of dendritic cell differentiation and subset distribution by the zinc finger protein CTCF
    • Koesters, C., Unger, B., Bilic, I., et al. (2007). Regulation of dendritic cell differentiation and subset distribution by the zinc finger protein CTCF. Immunol. Lett. 109, 165-174.
    • (2007) Immunol. Lett. , vol.109 , pp. 165-174
    • Koesters, C.1    Unger, B.2    Bilic, I.3
  • 25
    • 33747196725 scopus 로고    scopus 로고
    • Multilineage transcriptional priming and determination of alternate hematopoietic cell fates
    • Laslo, P., Spooner, C.J., Warmflash, A., et al. (2006). Multilineage transcriptional priming and determination of alternate hematopoietic cell fates. Cell 126, 755-766.
    • (2006) Cell , vol.126 , pp. 755-766
    • Laslo, P.1    Spooner, C.J.2    Warmflash, A.3
  • 26
    • 53149130940 scopus 로고    scopus 로고
    • The LPS-induced transcriptional upregulation of the chicken lysozyme locus involves CTCF eviction and noncoding RNA transcription
    • Lefevre, P., Witham, J., Lacroix, C.E., et al. (2008). The LPS-induced transcriptional upregulation of the chicken lysozyme locus involves CTCF eviction and noncoding RNA transcription. Mol. Cell 32, 129-139.
    • (2008) Mol. Cell , vol.32 , pp. 129-139
    • Lefevre, P.1    Witham, J.2    Lacroix, C.E.3
  • 27
    • 0025675441 scopus 로고
    • A novel sequencespecific DNA binding protein which interacts with three regularly spaced direct repeats of the CCCTC-motif in the 5?-flanking sequence of the chicken c-myc gene
    • Lobanenkov, V.V., Nicolas, R.H., Adler, V.V., et al. (1990). A novel sequencespecific DNA binding protein which interacts with three regularly spaced direct repeats of the CCCTC-motif in the 5?-flanking sequence of the chicken c-myc gene. Oncogene 5, 1743-1753.
    • (1990) Oncogene , vol.5 , pp. 1743-1753
    • Lobanenkov, V.V.1    Nicolas, R.H.2    Adler, V.V.3
  • 28
    • 0344838438 scopus 로고    scopus 로고
    • Thyroid hormone-regulated enhancer blocking: Cooperation of CTCF and thyroid hormone receptor
    • Lutz, M., Burke, L.J., LeFevre, P., et al. (2003). Thyroid hormone-regulated enhancer blocking: cooperation of CTCF and thyroid hormone receptor. EMBO J. 22, 1579-1587.
    • (2003) EMBO J. , vol.22 , pp. 1579-1587
    • Lutz, M.1    Burke, L.J.2    Lefevre, P.3
  • 29
    • 59249092289 scopus 로고    scopus 로고
    • The CTCF insulator protein is posttranslationally modified by SUMO
    • MacPherson, M.J., Beatty, L.G., Zhou,W., et al. (2009). The CTCF insulator protein is posttranslationally modified by SUMO. Mol. Cell. Biol. 29, 714-725.
    • (2009) Mol. Cell. Biol. , vol.29 , pp. 714-725
    • MacPherson, M.J.1    Zhouw, G.B.L.2
  • 30
    • 0037423930 scopus 로고    scopus 로고
    • Conserved histone variant H2A.Z protects euchromatin from the ectopic spread of silent heterochromatin
    • Meneghini, M.D., Wu, M., and Madhani, H.D. (2003). Conserved histone variant H2A.Z protects euchromatin from the ectopic spread of silent heterochromatin. Cell 112, 725-736.
    • (2003) Cell , vol.112 , pp. 725-736
    • Meneghini, M.D.1    Wu, M.2    Madhani, H.D.3
  • 31
    • 33847077659 scopus 로고    scopus 로고
    • Beyond the sequence: Cellular organization of genome function
    • Misteli, T. (2007). Beyond the sequence: cellular organization of genome function. Cell 128, 787-800.
    • (2007) Cell , vol.128 , pp. 787-800
    • Misteli, T.1
  • 32
    • 0032146794 scopus 로고    scopus 로고
    • PU.1 induces myeloid lineage commitment in multipotent hematopoietic progenitors
    • Nerlov, C., and Graf, T. (1998). PU.1 induces myeloid lineage commitment in multipotent hematopoietic progenitors. Genes Dev. 12, 2403-2412.
    • (1998) Genes Dev. , vol.12 , pp. 2403-2412
    • Nerlov, C.1    Graf, T.2
  • 33
    • 84870278203 scopus 로고    scopus 로고
    • Adaptive evolution and the birth of CTCF binding sites in the Drosophila genome
    • Ni, X., Zhang, Y.E., Negre, N., et al. (2012). Adaptive evolution and the birth of CTCF binding sites in the Drosophila genome. PLoS Biol. 10, e1001420.
    • (2012) PLoS Biol. , vol.10
    • Ni, X.1    Zhang, Y.E.2    Negre, N.3
  • 34
    • 78651510784 scopus 로고    scopus 로고
    • Global regulation of H2A.Z localization by the INO80 chromatin-remodeling enzyme is essential for genome integrity
    • Papamichos-Chronakis, M.,Watanabe, S., Rando, O.J., et al. (2011). Global regulation of H2A.Z localization by the INO80 chromatin-remodeling enzyme is essential for genome integrity. Cell 144, 200-213.
    • (2011) Cell , vol.144 , pp. 200-213
    • Papamichos-Chronakis, M.1    Watanabe, S.2    Rando, O.J.3
  • 35
    • 84878891601 scopus 로고    scopus 로고
    • Promoter proximal CTCF binding is associated with an increase in the transcriptional pausing index
    • Paredes, S.H., Melgar, M.F., and Sethupathy, P. (2013). Promoter proximal CTCF binding is associated with an increase in the transcriptional pausing index. Bioinformatics 29, 1485-1487.
    • (2013) Bioinformatics , vol.29 , pp. 1485-1487
    • Paredes, S.H.1    Melgar, M.F.2    Sethupathy, P.3
  • 36
    • 38849121606 scopus 로고    scopus 로고
    • Cohesins functionally associate with CTCF on mammalian chromosome arms
    • Parelho, V., Hadjur, S., Spivakov, M., et al. (2008). Cohesins functionally associate with CTCF on mammalian chromosome arms. Cell 132, 422-433.
    • (2008) Cell , vol.132 , pp. 422-433
    • Parelho, V.1    Hadjur, S.2    Spivakov, M.3
  • 37
    • 67549119096 scopus 로고    scopus 로고
    • CTCF: Master weaver of the genome
    • Phillips, J.E., and Corces, V.G. (2009). CTCF: master weaver of the genome. Cell 137, 1194-1211.
    • (2009) Cell , vol.137 , pp. 1194-1211
    • Phillips, J.E.1    Corces, V.G.2
  • 38
    • 0034774852 scopus 로고    scopus 로고
    • Ectopic expression of CCAAT/enhancer binding protein beta (C/EBPbeta) in long-term bone marrow cultures induces granulopoiesis and alters stromal cell function
    • Popernack, P.M., Truong, L.T., Kamphuis, M., et al. (2001). Ectopic expression of CCAAT/enhancer binding protein beta (C/EBPbeta) in long-term bone marrow cultures induces granulopoiesis and alters stromal cell function. J. Hematother. Stem Cell Res. 10, 631-642.
    • (2001) J. Hematother. Stem Cell Res. , vol.10 , pp. 631-642
    • Popernack, P.M.1    Truong, L.T.2    Kamphuis, M.3
  • 39
    • 79851485916 scopus 로고    scopus 로고
    • Transcription initiation patterns indicate divergent strategies for gene regulation at the chromatin level
    • Rach, E.A., Winter, D.R., Benjamin, A.M., et al. (2011). Transcription initiation patterns indicate divergent strategies for gene regulation at the chromatin level. PLoS Genet. 7, e1001274.
    • (2011) PLoS Genet. , vol.7
    • Rach, E.A.1    Winter, D.R.2    Benjamin, A.M.3
  • 40
    • 11244251722 scopus 로고    scopus 로고
    • Interplay of pu.1 and gata1 determines myelo-erythroid progenitor cell fate in zebrafish
    • Rhodes, J., Hagen, A., Hsu, K., et al. (2005). Interplay of pu.1 and gata1 determines myelo-erythroid progenitor cell fate in zebrafish. Dev. Cell 8, 97-108.
    • (2005) Dev. Cell , vol.8 , pp. 97-108
    • Rhodes, J.1    Hagen, A.2    Hsu, K.3
  • 41
    • 0031843168 scopus 로고    scopus 로고
    • GATA-1 dominantly activates a program of erythroid gene expression in factor-dependent myeloid FDCW2 cells
    • Seshasayee, D., Gaines, P., and Wojchowski, D.M. (1998). GATA-1 dominantly activates a program of erythroid gene expression in factor-dependent myeloid FDCW2 cells. Mol. Cell. Biol. 18, 3278-3288.
    • (1998) Mol. Cell. Biol. , vol.18 , pp. 3278-3288
    • Seshasayee, D.1    Gaines, P.2    Wojchowski, D.M.3
  • 42
    • 80455176999 scopus 로고    scopus 로고
    • CTCF-promoted RNA polymerase II pausing links DNA methylation to splicing
    • Shukla, S., Kavak, E., Gregory, M., et al. (2011). CTCF-promoted RNA polymerase II pausing links DNA methylation to splicing. Nature 479, 74-79.
    • (2011) Nature , vol.479 , pp. 74-79
    • Shukla, S.1    Kavak, E.2    Gregory, M.3
  • 43
    • 78649921825 scopus 로고    scopus 로고
    • Functional analysis of CTCF during mammalian limb development
    • Soshnikova, N., Montavon, T., Leleu, M., et al. (2010). Functional analysis of CTCF during mammalian limb development. Dev. Cell 19, 819-830.
    • (2010) Dev. Cell , vol.19 , pp. 819-830
    • Soshnikova, N.1    Montavon, T.2    Leleu, M.3
  • 44
    • 0036645169 scopus 로고    scopus 로고
    • Transcription factorcomplex formation and chromatin fine structure alterations at the murine c-fms (CSF-1 receptor) locus during maturation of myeloid precursor cells
    • Tagoh, H., Himes, R., Clarke, D., et al. (2002). Transcription factorcomplex formation and chromatin fine structure alterations at the murine c-fms (CSF-1 receptor) locus during maturation of myeloid precursor cells. Genes Dev. 16, 1721-1737.
    • (2002) Genes Dev. , vol.16 , pp. 1721-1737
    • Tagoh, H.1    Himes, R.2    Clarke, D.3
  • 45
    • 23044502281 scopus 로고    scopus 로고
    • CTCF regulates growth and erythroid differentiation of human myeloid leukemia cells
    • Torrano, V., Chernukhin, I., Docquier, F., et al. (2005). CTCF regulates growth and erythroid differentiation of human myeloid leukemia cells. J. Biol. Chem. 280, 28152-28161.
    • (2005) J. Biol. Chem. , vol.280 , pp. 28152-28161
    • Torrano, V.1    Chernukhin, I.2    Docquier, F.3
  • 46
    • 33744506421 scopus 로고    scopus 로고
    • Targeting of CTCF to the nucleolus inhibits nucleolar transcription through a poly(ADP-ribosyl)ationdependent mechanism
    • Torrano, V., Navascues, J., Docquier, F., et al. (2006). Targeting of CTCF to the nucleolus inhibits nucleolar transcription through a poly(ADP-ribosyl)ationdependent mechanism. J. Cell Sci. 119, 1746-1759.
    • (2006) J. Cell Sci. , vol.119 , pp. 1746-1759
    • Torrano, V.1    Navascues, J.2    Docquier, F.3
  • 47
    • 60349122111 scopus 로고    scopus 로고
    • A canonical promoter organization of the transcription machinery and its regulators in the Saccharomyces genome
    • Venters, B.J., and Pugh, B.F. (2009). A canonical promoter organization of the transcription machinery and its regulators in the Saccharomyces genome. Genome Res. 19, 360-371.
    • (2009) Genome Res. , vol.19 , pp. 360-371
    • Venters, B.J.1    Pugh, B.F.2
  • 48
    • 35548990188 scopus 로고    scopus 로고
    • We gather together: Insulators and genome organization
    • Wallace, J.A., and Felsenfeld, G. (2007). We gather together: insulators and genome organization. Curr. Opin. Genet. Dev. 17, 400-407.
    • (2007) Curr. Opin. Genet. Dev , vol.17 , pp. 400-407
    • Wallace, J.A.1    Felsenfeld, G.2
  • 49
    • 84865836579 scopus 로고    scopus 로고
    • Widespread plasticity in CTCF occupancy linked to DNA methylation
    • Wang, H., Maurano, M.T., Qu, H., et al. (2012). Widespread plasticity in CTCF occupancy linked to DNA methylation. Genome Res. 22, 1680-1688.
    • (2012) Genome Res. , vol.22 , pp. 1680-1688
    • Wang, H.1    Maurano, M.T.2    Qu, H.3
  • 50
    • 60349084960 scopus 로고    scopus 로고
    • Transcriptomic profiling identifies a PU.1 regulatory network in macrophages
    • Weigelt, K., Lichtinger, M., Rehli, M., et al. (2009). Transcriptomic profiling identifies a PU.1 regulatory network in macrophages. Biochem. Biophys. Res. Commun. 380, 308-312.
    • (2009) Biochem. Biophys. Res. Commun. , vol.380 , pp. 308-312
    • Weigelt, K.1    Lichtinger, M.2    Rehli, M.3
  • 51
    • 39149121436 scopus 로고    scopus 로고
    • Cohesin mediates transcriptional insulation by CCCTC-binding factor
    • Wendt, K.S., Yoshida, K., Itoh, T., et al. (2008). Cohesin mediates transcriptional insulation by CCCTC-binding factor. Nature 451, 796-801.
    • (2008) Nature , vol.451 , pp. 796-801
    • Wendt, K.S.1    Yoshida, K.2    Itoh, T.3
  • 52
    • 80053952320 scopus 로고    scopus 로고
    • CTCF function is modulated by neighboring DNA binding factors
    • Weth, O., and Renkawitz, R. (2011). CTCF function is modulated by neighboring DNA binding factors. Biochem. Cell Biol. 89, 459-468.
    • (2011) Biochem. Cell Biol. , vol.89 , pp. 459-468
    • Weth, O.1    Renkawitz, R.2
  • 53
    • 6944231017 scopus 로고    scopus 로고
    • Poly(ADP-ribosyl)ation regulates CTCF-dependent chromatin insulation
    • Yu, W., Ginjala, V., Pant, V., et al. (2004). Poly(ADP-ribosyl)ation regulates CTCF-dependent chromatin insulation. Nat. Genet. 36, 1105-1110.
    • (2004) Nat. Genet. , vol.36 , pp. 1105-1110
    • Yu, W.1    Ginjala, V.2    Pant, V.3
  • 54
    • 0030705191 scopus 로고    scopus 로고
    • Activation of the megakaryocytespecific gene platelet basic protein (PBP) by the Ets family factor PU.1
    • Zhang, C., Gadue, P., Scott, E., et al. (1997). Activation of the megakaryocytespecific gene platelet basic protein (PBP) by the Ets family factor PU.1. J. Biol. Chem. 272, 26236-26246.
    • (1997) J. Biol. Chem. , vol.272 , pp. 26236-26246
    • Zhang, C.1    Gadue, P.2    Scott, E.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.